# Soil Survey Laboratory Data and Descriptions for Some Soils of...

.. IOWA

SOIL CONSERVATION SERVICE U.S. DEPARTMENT OF AGRICULTURE In cooperation with IOWA AGRICULTURE AND HOME ECONOMICS EXPERIMENT STATION

Soil survey investigations reports already published:

SSIR No. 1 Soil Survey Laboratory Methods and Procedures for Collecting Soil Samples

Soil Survey Laboratory Data and Descriptions for

```
Some Soils of:
SSIR No.
          2
                  North Dakota
SSIR No.
                  Iowa
          4
SSIR No.
                 Kansas
SSIR No.
          5
                 Nebraska
SSIR No.
                 Arkansas, Louisiana, and Missouri
SSIR No.
          7
                 Montana
SSIR No.
          -8
                 Wyoming
SSIR No.
         9
                 Minnesota
SSIR No. 10
                 Colorado
SSIR No. 11
                 Oklahoma
SSIR No. 12
                 Puerto Rico and the Virgin Islands
SSIR No. 13
                 Mississippi
SSIR No. 14
                 Kentucky
SSIR No. 15
                 Tennessee
SSIR No. 16
                 North Carolina, South Carolina, and Georgia
SSIR No. 17
                 Wisconsin
SSIR No. 18
                 Indiana
SSIR No. 19
                 Illinois
```

New England States

Soil Survey Laboratory Data and Descriptions for Some Soils of:

A Toposequence of Soils in Tonalite Grus in the

Southern California Peninsular Range

```
SSIR No. 22
                 Alabama and Florida
SSIR No. 23
                 Nevada
SSIR No. 24
                 California
SSIR No. 25
                 New York
SSIR No. 26
                 New Jersey
SSIR No. 27
                 Pennsylvania
SSIR No. 28
                 Arizona
SSIR No. 29
                 Hawaii
SSIR No. 30
                 Texas
```

SSIR No. 20

SSIR No. 21

# Soil Survey Laboratory Data and Prentitions for

MAY 1978

### PREFACE

The Soil Survey Investigations Report (SSIR) Series was established to preserve and make available technical information resulting from soil survey investigations. SSIR No. 1, "Soil Survey Laboratory Methods and Procedures for Collecting Soil Samples," revised April 1972, describes in detail the methods used in the soil survey laboratories. One report involves a single specific study. Other reports in the series contain pedon descriptions and data from the individual states and Puerto Rico and the Virgin Islands. The entire series is listed on the inside front cover.

This report contains pedon descriptions and data obtained in Iowa from 1959 to 1971. The majority of laboratory analyses were conducted at the Soil Survey Investigations Unit, Lincoln, Nebraska and Iowa State University, Ames, Iowa.

Laboratory data for different soils cannot always be compared without allowance for the method. Methods are indexed by code or footnote in data sheet column headings and are identified briefly on the following two pages. Detailed explanations of coded procedures are in SSIR No. 1.

Many of the soil descriptions published herein were prepared as working documents, not necessarily for publication. Some contain unusually detailed information pertinent to specific soil survey investigations. Such information, including older concepts of soil series, relationships among pedons, and field estimates of properties, is useful in a publication of this type. Editing is, therefore, minimal with emphasis toward preservation of descriptive data.

Many pedons no longer represent the soil series with which they were originally identified; a few represent series being considered for reclassification (these are footnoted on pages where they occur). All were classified during the period 1970 to 1975 and were checked against series classification as of February 1976. The Arbor series was officially reclassified in August 1976. Some series names changed and are footnoted where the original name carries useful connotations. Pedons that are not included within the limits of recognized series are footnoted; some pedons are called taxadjuncts to or variants of a series. All pedons are classified to the family level. In the taxonomic and geographic indexes pedons are arranged by taxonomic unit.

### METERODS CODE SYMBOLS

1. SAMPLE COLLECTION AND PREPARATION 5. ION-EXCHANGE ANALYSES A. Cation-exchange capacity A. Field sampling 1. NH40Ac, pH 7.0 1. Site selection a. Direct distillation 2. Soil sampling a. Stony soils 2. NaOAc, pH 8.2 b. Marsh and swamp soils a. Centrifuge method B. Laboratory preparation 3. Sum of cations a. Acidity by BaCl<sub>2</sub>-TEA, pH 8.2; bases by NH<sub>4</sub>OAc, pH 7.0 1. Standard (airdry) a. Square-hole 2-mm sieve b. Round-hole 2-mm sieve b. Sum of bases plus Al 2. Field moist 6. NH40Ac, pH 7.0 leaching tube 3. Carbonate-containing material a. Direct distillation 4. Carbonate-indurated material B. Extractable bases 5. See appended section for Iowa State 1. NHhOAc extraction University samples a. Uncorrected 2. CONVENTIONS b. Corrected (exchangeable) A. Size-fraction base for reporting c. See 5B4 1. <2-mm 2. KCl-TEA extraction, pH 8.2 3. KC1-TEA, pH 8.2 (revised) 2. <size specified B. Data sheet symbols a. Uncorrected tr: trace, not measurable by quantitative b. Corrected (exchangeable) 4. NH, OAc, pH 7.0 (modified) a. Uncorrected procedure used or less than reportable amount analysis run but not detected b. Corrected (exchangeable) C. Base saturation blank: analysis not run nd: analysis not run 1. NH40Ac, pH 7.0 2. NaOAc, pH 8.2 3. Sum of cations less than reported amount or none present 3. PARTICLE-SIZE ANALYSES A. Particles <2-mm (pipet method) D. Sodium saturation (exchangeable Na pct.) 1. Airdry samples 1. NaOAc, pH 8.2 a. Carbonate and noncarbonate clay 2. NH4OAc, pH 7.0 b. Fine clay E. Sodium-adsorption ratio c. Water-dispersible clay F. Calcium saturation 1. NH, OAC, pH 7.0 6. CHEMICAL ANALYSES B. Particles >2-mm 1. Weight estimates a. By field and laboratory weighing A. Organic carbon b. From volume and weight estimates 1. Acid-dichromate digestion a. FeSO, titration
b. CO, evolution, gravimetric
2. Dry combustion 2. Volume estimates 4. FABRIC-RELATED ANALYSES A. Bulk density 1. Saran-coated clods a. CO2 evolution I b. CO evolution II B. Nitrogen<sup>2</sup> a. Field state b. Airdry c. 30-cm absorption 1. Kjeldahl digestion d. 1/3-bar desorption I a. Ammonia distillation e. 1/3-bar desorption II C. Iron f. 1/3-bar desorption III 1. Dithionite extraction g. 1/10-bar desorption a. Dichromate titration h. Ovendry b. EDTA titration 3. Cores 2. Dithionite-citrate extraction a. Field moist a. Orthophenanthroline colorimetry B. Water retention b. Atomic absorption Pressigner plate extrention (1/2 on 1/10 han)

- a. Sieved samples
- b. Soil pieces
- c. Natural clods
- 2. Pressure-membrane extraction (15 bars)
  - a. Field-moist samples
- Sand-table absorption
- 4. Field state
- 5. Airday
- C. Water-retention difference
  - 1. 1/3 bar to 15 bars
  - 2. 1/10 bar to 15 bars
- D. Linear extensibility 1. Dry to moist

- a. Potassium thiocyanate colorimetry
- 4. Pyrophosphate-dithionite extraction
- 5. Sodium-pyrophosphate extraction
- a. Atomic absorption
- 6. Ammonium oxalate extraction a. Atomic absorption
- E. Calcium carbonate
- 1. HCl treatment
  - a. Gas volumetric
  - b. Manometric
  - c. Weight loss e. Titrimetric
  - 2. Sensitive qualitative method 374 0000

### METHODS CODE SYMBOLS -- continued

6. CHEMICAL ANALYSES (cont.)

6. CHEMICAL ANALYSES (cont.)

3. NHLOAc extraction 2. NH4OAc extraction a. Aluminon III a. Flame photometry 4. NaOAc extraction b. Atomic absorption a. Aluminon III Potassium Sodium pyrophosphate extraction 1. Saturation extract a. Atomic absorption a. Flame photometry 6. Ammonium oxalate extraction b. Atomic absorption a. Atomic absorption 2. NH, OAc extraction 7. Dithionite-citrate extraction a. Flame photometry a. Atomic absorption b. Atomic absorption M. Extractable acidity R. Sulfur 1. NaHCO, extract, pH 8.5 a. Methylene blue 1. BaCl2-triethanolamine I a. Back-titration with HCl 2. BaCl2-triethanolamine II HCl release (sulfide) a. Back-titration with HCl a. Iodine titration I. Carbonate S. Total phosphorus 1. Saturation extract 1. Perchloric acid digestion a. Acid titration a. Molybdovanadophosphoric acid J. Bicarbonate colorimetry 1. Saturation extract T. Available phosphorus a. Acid titration 1. See appended section for K. Chloride Iowa State University samples 1. Saturation extract 7. MINERALOGY a. Mohr titration A. Instrumental analysis b. Potentiometric titration 1. Preparation L. Sulfate a. Carbonate removal 1. Saturation extract b. Organic-matter removal a. Gravimetric, BaSO<sub>l4</sub> c. Iron removal b. EDTA titration d. Particle-size fractionation 2. NHLOAc extraction e. PSDA pretreatment a. Gravimetric, Bason 2. X-ray diffraction <u> Th</u>in<u>fi</u>] -- ^b. Thin film on glass, resin pretreatment c. Thin film on glass,  ${\tt NaPO}_3$  pretreatment 1. Saturation extract a. PDS acid colorimetry b. Diphenylamine g. Powder mount, diffractometer recording N. Calcium h. Powder mount, camera recording 1. Saturation extract 3. Differential thermal analysis a. EDTA titration B. Optical analysis b. Atomic absorption 1. Grain studies 2. NH<sub>L</sub>OAc extraction 2. Electron microscopy a. EDTA-alcohol separation C. Total analysis b. Oxalate-permanganate I 1. Chemical c. Oxalate-permanganate II X-ray emission spectrography Fe, Al, and Mn removed D. Surface area d. Oxalate-cerate 1. Glycerol retention e. Atomic absorption 8. MISCELLANEOUS 3. NH4Cl-EtOH extraction A. Saturated paste, mixed a. EDTA titration 1. Saturation extract 4. KCl-TEA extraction a. Conductivity b. Conductivity, quick test a. Oxalate-permanganate b. EDTA titration 2. Bureau of Soils cup, resistance c. Atomic absorption B. Saturated paste, capillary rise 1. Saturation extract M. Magnesium 1. Saturation extract B. Conductivity C. pH a. EDTA titration b. Atomic absorption 1. Soil suspensions 2. NH<sub>2</sub>OAc extraction a. Water dilution a. EDTA-alcohol separation b. Saturated paste c. KCl b. Phosphate titration e. CaCl<sub>2</sub> D. Ratios and estimates d. Atomic absorption 3. NH<sub>L</sub>Cl-EtOH extraction a. EDTA titration 1. To total clay 4. KCl-TEA extraction 2. To noncarbonate clay 3. Ca to Mg (extractable) 4. Estimated clay percentage

Iowa State University Soil Testing Laboratory

5. Estimated total salt

E. Soil resistivity

Saturated paste

a. Phosphate titration b. EDTA titration c. Atomic absorption

1. Saturation extract

a. Flame photometry b. Atomic absorption

P. Sodium

### Iowa State University Soil Testing Laboratory -- Continued

### II. Laboratory procedures

- A. Subsampling the soil sample for analyses
  - Reagents
     1.1 Dejonized, distilled water
  - 2. Procedure

The sample is screened through a 1/4-inch screen and thoroughly mixed. The moisture content of the moist soil sample is estimated and a subsample of the moist soil equivalent to  $100\,$  g of ovendry ( $110\,$  C°) soil is weighed out and placed in a mixing cylinder. An amount of deionized, distilled water sufficient to provide 200 ml of water per  $100\,$  g of ovendry soil is added to the soil in the cylinder. The soil and water are stirred until a uniform suspension of soil in water is obtained. Subsamples of this suspension are drawn off in the amounts needed for each analysis.

- B. Phosphorus
  - 1. Reagents
    - 1.1 Extracting solution (commonly called Bray No. 1 phosphorus extractant)

      Add 45.5 ml of concentrated HCl in about 17 liters of distilled water. Dissolve
      25 g of NH<sub>0</sub>F in about 200 ml of distilled water. Filter and add to the HCl solution.

      Make up to 18 liter volume with distilled water. This solution is 0.025 N HCl and
      0.03 N NH<sub>0</sub>F after it is added to the soil-water suspension sample.
    - 2.1 Molybdate solution
      Dissolve 72.25 g of ammonium molybdate in 400 ml of distilled water heated to
      60 C. Cool the solution and add 1,500 Ml of HCl (sp. gr. 1.19, 37.5 pct.) Dilute
      the solution to 2000 ml with distilled water. Store in a glass-stoppered brown bottle
      containing 100 g of boric acid (H<sub>3</sub>BO<sub>3</sub>).
    - 3.1 Stock (dry) reducing agent
      Mix 25 g of 1-amino-2-naphthol-4-sulfonic acid with 50 g of sodium sulfite and
      1,462.5 g of sodium pyrosulfite. Grind the mixture to a fine powder in a ball mill
      and store in a sealed brown bottle in a cool place. This reagent may be kept for a
      year under these conditions.
    - 4.1 Dilute reducing agent Dissolve 80 g of the dry reducing agent in 500 ml of distilled water heated to 60 C°. Cool the solution and store in a brown dropper bottle. Replace this solution every 3 weeks.
    - 5.1 Standard phosphorus solutions
      Dissolve 0.2195 g of pure potassium dihydrogen phosphate in distilled water and dilute to 1,000 ml with distilled water. This solution contains 50 ppm of P. Prepare other P standards by dilution.
    - 6.1 Filter paper

      Use S & S, ll cm, No. 402 single acid-washed filter paper. Each lot of filter paper must be checked for "phosphorus or arsenic" contamination by running a blank.

### CLASSIFICATION INDEX

| ~     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Page                        |                                                                                                                                                                                                                                                                                                                           | Page        |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| AQUA  | ALFISOL<br>J.F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | ENTISOL<br>AQUENT                                                                                                                                                                                                                                                                                                         |             |
| zigon | <u>=-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | WARRIE                                                                                                                                                                                                                                                                                                                    |             |
|       | ALBAQUALF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | FLUVAQUENT                                                                                                                                                                                                                                                                                                                |             |
|       | Molldo Albanusis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             | \$7                                                                                                                                                                                                                                                                                                                       |             |
|       | Mollic Albaqualf Fine, montmorillonitic, mesic                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | Vertic Fluvaquent Very fine, montmorillonitic (calcareous),                                                                                                                                                                                                                                                               |             |
|       | Appanoose silt loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                           | mesic (carcareous),                                                                                                                                                                                                                                                                                                       |             |
|       | Appanoose silt loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                           | Albaton silty clay                                                                                                                                                                                                                                                                                                        | 3           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                                                                                                                                                                                                                                                                                                                           |             |
|       | OCHRAQUALF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             | FLUVENT                                                                                                                                                                                                                                                                                                                   |             |
|       | Aeric Ochraqualf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             | UDIFLUVENT                                                                                                                                                                                                                                                                                                                |             |
|       | Fine, montmorillonitic, mesic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                                                                                                                                                                                                                                           |             |
|       | Rathbun silt loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 53                          | Aquic Udifluvent                                                                                                                                                                                                                                                                                                          |             |
|       | Rathbun silt loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 55                          | Coarse-silty over clayey, mixed                                                                                                                                                                                                                                                                                           |             |
|       | Mallia Cahmanuali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             | (calcareous), mesic<br>Modale silt loam                                                                                                                                                                                                                                                                                   | 49          |
|       | Mollic Ochraqualf Fine-silty, mixed, mesic                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             | Modate aftr Town                                                                                                                                                                                                                                                                                                          | 49          |
|       | Coppock silt loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                          | Mollic Udifluvent                                                                                                                                                                                                                                                                                                         |             |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                           | Coarse-silty, mixed (calcareous), mesic                                                                                                                                                                                                                                                                                   |             |
|       | Udollic Ochraqualf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             | Haynie silt loam                                                                                                                                                                                                                                                                                                          | 17          |
|       | Fine-loamy, mixed, mesic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                                                                                                                                                                                                                                                                                                                           |             |
|       | Riceville loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 137*                        | ORTHENT                                                                                                                                                                                                                                                                                                                   |             |
|       | Riceville loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 139*                        | UDORTHENT                                                                                                                                                                                                                                                                                                                 |             |
|       | Fine, montmorillonitic, mesic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             | OD/ALMBA 1                                                                                                                                                                                                                                                                                                                |             |
|       | Kniffin silt loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27                          | Typic Udorthent                                                                                                                                                                                                                                                                                                           |             |
|       | Kniffin silt loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29                          | Coarse-silty, mixed (calcareous), mesic                                                                                                                                                                                                                                                                                   |             |
|       | Pershing silt loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51                          | Hamburg silt loam                                                                                                                                                                                                                                                                                                         | 47*         |
|       | Series not designated (sampled as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             | Ida silt loam, taxadjunct <u>4</u> /                                                                                                                                                                                                                                                                                      | 53*         |
|       | Seymour)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 57                          | Fire eiler mixed (eclearence) monte                                                                                                                                                                                                                                                                                       |             |
|       | Series not designated (sampled as<br>Seymour)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 59                          | Fine-silty, mixed (calcareous), mesic<br>Ida silt loam                                                                                                                                                                                                                                                                    | 49*         |
|       | Series not designated (sampled as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             | 100 para 100m                                                                                                                                                                                                                                                                                                             | ""          |
|       | Seymour)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61                          | INCEPTISOL                                                                                                                                                                                                                                                                                                                |             |
| ***** | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             | AAIRDT                                                                                                                                                                                                                                                                                                                    |             |
| UDAL  | <u>ır</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | AQUEPT                                                                                                                                                                                                                                                                                                                    |             |
|       | HAPLUDALF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | HAPLAQUEPT                                                                                                                                                                                                                                                                                                                |             |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                                                                                                                                                                                                                                                                                                                           |             |
|       | Typic Hapludalf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             | Typic Haplaquept                                                                                                                                                                                                                                                                                                          |             |
|       | Fine-loamy, mixed, mesic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | Fine, montmorillonitic, mesic, sloping                                                                                                                                                                                                                                                                                    |             |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                                                                                                                                                                                                                                                                                                                           |             |
|       | Series not designated (sampled as<br>Bonair) 16/                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11*                         | Series not designated (sampled as<br>Clarinda) 17/                                                                                                                                                                                                                                                                        | 17*         |
|       | Bonair) <u>16</u> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11*                         | Clarinda) 17/                                                                                                                                                                                                                                                                                                             | 17*         |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11*<br>13*                  |                                                                                                                                                                                                                                                                                                                           | 17*         |
|       | Bonair) <u>16/</u> Series not designated (sampled as Bonair) <u>16/</u>                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | Clarinda) 17/                                                                                                                                                                                                                                                                                                             | 17*         |
| ٠     | Bonair) 16/ Series not designated (sampled as Bonair) 16/ Fine-silty, mixed, mesic                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13*                         | Clarinda) 17/                                                                                                                                                                                                                                                                                                             | 17*         |
|       | Bonair) 16/ Series not designated (sampled as Bonair) 16/ Fine-silty, mixed, mesic Fayette silt loam                                                                                                                                                                                                                                                                                                                                                                                                                | 13*<br>41*                  | Clarinda) <u>17</u> / OCHRETT EUTROCHREPT                                                                                                                                                                                                                                                                                 | 17*         |
| ٠     | Bonsir) 16/ Series not designated (sampled as Bonair) 16/ Fine-silty, mixed, mesic Fayette silt loam Fayette silt loam                                                                                                                                                                                                                                                                                                                                                                                              | 13*                         | Clarinda) 17/                                                                                                                                                                                                                                                                                                             | 17*         |
|       | Bonair) 16/ Series not designated (sampled as Bonair) 16/ Fine-silty, mixed, mesic Fayette silt loam                                                                                                                                                                                                                                                                                                                                                                                                                | 13*<br>41*<br>43*           | Clarinda) 17/ OCHREPT EUTROCHREPT Typic Eutrochrept                                                                                                                                                                                                                                                                       |             |
| ٠     | Bonair) 16/ Series not designated (sampled as Bonair) 16/  Fine-silty, mixed, mesic Fayette silt loam Fayette silt loam Fayette silt loam                                                                                                                                                                                                                                                                                                                                                                           | 13*<br>41*<br>43*<br>45*    | Clarinda) 17/ OCHREPT  EUTROCHREPT  Typic Eutrochrept Fine-loamy, mixed, mesic                                                                                                                                                                                                                                            | 17*<br>167* |
| ٠     | Bonair) 16/ Series not designated (sampled as Bonair) 16/  Fine-silty, mixed, mesic Fayette silt loam Fayette silt loam Fayette silt loam Fine, montmorillonitic, mesic Clinton silt loam                                                                                                                                                                                                                                                                                                                           | 13* 41* 43* 45*             | Clarinda) 17/ OCHREPT  EUTROCHREPT  Typic Eutrochrept Fine-loamy, mixed, mesic Series not designated (sampled as Shelby) 19/                                                                                                                                                                                              |             |
| ٠     | Bonsir) 16/ Series not designated (sampled as Bonair) 16/  Fine-silty, mixed, mesic Fayette silt loam Fayette silt loam Fayette silt loam Fine, montmorillonitic, mesic Clinton silt loam Clinton silt loam                                                                                                                                                                                                                                                                                                         | 13*<br>41*<br>43*<br>45*    | Clarinda) 17/ OCHREPT  EUTROCHREPT  Typic Eutrochrept Fine-loamy, mixed, mesic Series not designated (sampled as                                                                                                                                                                                                          |             |
| ٠     | Bonsir) 16/ Series not designated (sampled as Bonair) 16/  Fine-silty, mixed, mesic Fayette silt loam Fayette silt loam Fayette silt loam Fine, montmorillonitic, mesic Clinton silt loam Clinton silt loam Series not designated (sampled as                                                                                                                                                                                                                                                                       | 13* 41* 43* 45*             | Clarinda) 17/ OCHREPT  EUTROCHREPT  Typic Eutrochrept Fine-loamy, mixed, mesic Series not designated (sampled as Shelby) 19/  MOLLISOL                                                                                                                                                                                    |             |
| ٠     | Bonsir) 16/ Series not designated (sampled as Bonair) 16/  Fine-silty, mixed, mesic Fayette silt loam Fayette silt loam Fayette silt loam Fine, montmorillonitic, mesic Clinton silt loam Clinton silt loam                                                                                                                                                                                                                                                                                                         | 13* 41* 43* 45*             | Clarinda) 17/ OCHREPT  EUTROCHREPT  Typic Eutrochrept Fine-loamy, mixed, mesic Series not designated (sampled as Shelby) 19/                                                                                                                                                                                              |             |
| ٠     | Bonair) 16/ Series not designated (sampled as Bonair) 16/  Fine-silty, mixed, mesic Fayette silt loam Fayette silt loam Fayette silt loam Fine, montmorillonitic, mesic Clinton silt loam Clinton silt loam Series not designated (sampled as Adair) 15/  Aquic Hapludalf                                                                                                                                                                                                                                           | 13* 41* 43* 45*             | Clarinda) 17/ OCHREPT  EUTROCHREPT  Typic Eutrochrept Fine-loamy, mixed, mesic Series not designated (sampled as Shelby) 19/  MOLLISOL                                                                                                                                                                                    |             |
| ٠     | Bonair) 16/ Series not designated (sampled as Bonair) 16/  Fine-silty, mixed, mesic Fayette silt loam Fayette silt loam Fayette silt loam Fine, montmorillonitic, mesic Clinton silt loam Clinton silt loam Series not designated (sampled as Adair) 15/  Aquic Hapludalf Fine, montmorillonitic, mesic                                                                                                                                                                                                             | 13* 41* 43* 45*  19* 21*    | Clarinda) 17/ OCHREPT  EUTROCHREPT  Typic Eutrochrept Fine-loamy, mixed, mesic Series not designated (sampled as Shelby) 19/  MOLLISOL  ALBOLL  ARGIALBOLL                                                                                                                                                                |             |
| •     | Bonair) 16/ Series not designated (sampled as Bonair) 16/  Fine-silty, mixed, mesic fayette silt loam Fayette silt loam Fayette silt loam Fine, montmorillonitic, mesic Clinton silt loam Clinton silt loam Series not designated (sampled as Adair) 15/  Aquic Hapludalf Fine, montmorillonitic, mesic Weller silt loam                                                                                                                                                                                            | 13* 41* 43* 45*  19* 21* 5* | Clarinda) 17/ OCHREFT  EUTROCHREPT  Typic Eutrochrept Fine-loamy, mixed, mesic Series not designated (sampled as Shelby) 19/  MOLLISOL  ALBOLL  ARGIALBOLL  Typic Argialboll                                                                                                                                              |             |
| ٠     | Bonair) 16/ Series not designated (sampled as Bonair) 16/  Fine-silty, mixed, mesic Fayette silt loam Fayette silt loam Fayette silt loam Fine, montmorillonitic, mesic Clinton silt loam Clinton silt loam Series not designated (sampled as Adair) 15/  Aquic Hapludalf Fine, montmorillonitic, mesic                                                                                                                                                                                                             | 13* 41* 43* 45*  19* 21*    | Clarinda) 17/ OCHRETT  EUTROCHREPT  Typic Eutrochrept Fine-loamy, mixed, mesic Series not designated (sampled as Shelby) 19/  MOLLISOL  ALBOLL  ARGIALBOLL  Typic Argialboll Fine, montmorillonitic, mesic                                                                                                                |             |
| ٠     | Bonair) 16/ Series not designated (sampled as Bonair) 16/  Fine-silty, mixed, mesic Fayette silt loam Fayette silt loam Fayette silt loam Fine, montmorillonitic, mesic Clinton silt loam Clinton silt loam Series not designated (sampled as Adair) 15/  Aquic Hapludalf Fine, montmorillonitic, mesic Weller silt loam Weller silt loam                                                                                                                                                                           | 13* 41* 43* 45*  19* 21* 5* | Clarinda) 17/ OCHREFT  EUTROCHREPT  Typic Eutrochrept Fine-loamy, mixed, mesic Series not designated (sampled as Shelby) 19/  MOLLISOL  ALBOLL  ARGIALBOLL  Typic Argialboll                                                                                                                                              | 167*        |
| ٠     | Bonair) 16/ Series not designated (sampled as Bonair) 16/  Fine-silty, mixed, mesic Fayette silt loam Fayette silt loam Fayette silt loam Fine, montmorillonitic, mesic Clinton silt loam Clinton silt loam Series not designated (sampled as Adair) 15/  Aquic Hapludalf Fine, montmorillonitic, mesic Weller silt loam Weller silt loam Aquollic Hapludalf                                                                                                                                                        | 13* 41* 43* 45*  19* 21* 5* | Clarinda) 17/ OCHRETT  EUTROCHREPT  Typic Eutrochrept Fine-loamy, mixed, mesic Series not designated (sampled as Shelby) 19/  MOLLISOL  ALBOLL  ARGIALBOLL  Typic Argialboll Fine, montmorillonitic, mesic                                                                                                                | 167*        |
|       | Bonair) 16/ Series not designated (sampled as Bonair) 16/  Fine-silty, mixed, mesic Fayette silt loam Fayette silt loam Fayette silt loam Fine, montmorillonitic, mesic Clinton silt loam Clinton silt loam Series not designated (sampled as Adair) 15/  Aquic Hapludalf Fine, montmorillonitic, mesic Weller silt loam Weller silt loam                                                                                                                                                                           | 13* 41* 43* 45*  19* 21* 5* | Clarinda) 17/ OCHREFT  EUTROCHREPT  Typic Eutrochrept Fine-loamy, mixed, mesic Series not designated (sampled as Shelby) 19/  MOLLISOL  ALBOLL  ARGIALBOLL  Typic Argialboll Fine, montmorillonitic, mesic Edina silt loam  Argiaquic Argialboll Fine-silty, mixed, mesic                                                 | 167*<br>35* |
| •     | Bonair) 16/ Series not designated (sampled as Bonair) 16/  Fine-silty, mixed, mesic Fayette silt loam Fayette silt loam Fayette silt loam Fine, montmorillonitic, mesic Clinton silt loam Clinton silt loam Series not designated (sampled as Adair) 15/  Aquic Hapludalf Fine, montmorillonitic, mesic Weller silt loam Weller silt loam Aquollic Hapludalf Fine-loamy, mixed, mesic                                                                                                                               | 13* 41* 43* 45*  19* 21* 5* | Clarinda) 17/ OCHREPT  EUTROCHREPT  Typic Eutrochrept Fine-loamy, mixed, mesic Series not designated (sampled as Shelby) 19/  MOLLISOL  ALBOLL  ARGIALBOLL  Typic Argialboll Fine, montmorillonitic, mesic Edina silt loam  Argiaquic Argialboll                                                                          | 167*        |
| •     | Bonair) 16/ Series not designated (sampled as Bonair) 16/  Fine-silty, mixed, mesic Fayette silt loam Fayette silt loam Fayette silt loam Fine, montmorillonitic, mesic Clinton silt loam Clinton silt loam Series not designated (sampled as Adair) 15/  Aquic Hapludalf Fine, montmorillonitic, mesic Weller silt loam Weller silt loam Weller silt loam Aquollic Hapludalf Fine-loamy, mixed, mesic Lourdes loam Lourdes loam                                                                                    | 13* 41* 43* 45*  19* 21* 5* | Clarinda) 17/  OCHREPT  EUTROCHREPT  Typic Eutrochrept Fine-loamy, mixed, mesic Series not designated (sampled as Shelby) 19/  MOLLISOL  ALBOLL  ARGIALBOLL  Typic Argialboll Fine, montmorillonitic, mesic Edina silt loam  Argiaquic Argialboll Fine-silty, mixed, mesic Vesser silt loam                               | 167*<br>35* |
| •     | Bonair) 16/ Series not designated (sampled as Bonair) 16/  Fine-silty, mixed, mesic Fayette silt loam Fayette silt loam Fayette silt loam Fine, montmorillonitic, mesic Clinton silt loam Clinton silt loam Series not designated (sampled as Adair) 15/  Aquic Hapludalf Fine, montmorillonitic, mesic Weller silt loam Weller silt loam Weller silt loam Aquollic Hapludalf Fine-loamy, mixed, mesic Lourdes loam Lourdes loam Mollic Hapludalf                                                                   | 13* 41* 43* 45*  19* 21* 5* | Clarinda) 17/ OCHREPT  EUTROCHREPT  Typic Eutrochrept Fine-loamy, mixed, mesic Series not designated (sampled as Shelby) 19/  MOLLISOL  ALBOLL  ARGIALBOLL  Typic Argialboll Fine, montmorillonitic, mesic Edina silt loam  Argiaquic Argialboll Fine-silty, mixed, mesic Vesser silt loam  Fine, montmorillonitic, mesic | 167*<br>35* |
|       | Bonair) 16/ Series not designated (sampled as Bonair) 16/  Fine-silty, mixed, mesic Fayette silt loam Fayette silt loam Fayette silt loam Fine, montmorillonitic, mesic Clinton silt loam Clinton silt loam Series not designated (sampled as Adair) 15/  Aquic Hapludalf Fine, montmorillonitic, mesic Weller silt loam Weller silt loam Weller silt loam Meller silt loam Meller silt loam  Aquollic Hapludalf Fine-loamy, mixed, mesic Lourdes loam Lourdes loam  Mollic Hapludalf Fine, montmorillonitic, mesic | 13* 41* 43* 45*  19* 21* 5* | Clarinda) 17/  OCHREPT  EUTROCHREPT  Typic Eutrochrept Fine-loamy, mixed, mesic Series not designated (sampled as Shelby) 19/  MOLLISOL  ALBOLL  ARGIALBOLL  Typic Argialboll Fine, montmorillonitic, mesic Edina silt loam  Argiaquic Argialboll Fine-silty, mixed, mesic Vesser silt loam                               | 167*<br>35* |
|       | Bonair) 16/ Series not designated (sampled as Bonair) 16/  Fine-silty, mixed, mesic Fayette silt loam Fayette silt loam Fayette silt loam Fine, montmorillonitic, mesic Clinton silt loam Clinton silt loam Series not designated (sampled as Adair) 15/  Aquic Hapludalf Fine, montmorillonitic, mesic Weller silt loam Weller silt loam Weller silt loam Aquollic Hapludalf Fine-loamy, mixed, mesic Lourdes loam Lourdes loam Mollic Hapludalf                                                                   | 13* 41* 43* 45*  19* 21* 5* | Clarinda) 17/ OCHREPT  EUTROCHREPT  Typic Eutrochrept Fine-loamy, mixed, mesic Series not designated (sampled as Shelby) 19/  MOLLISOL  ALBOLL  ARGIALBOLL  Typic Argialboll Fine, montmorillonitic, mesic Edina silt loam  Argiaquic Argialboll Fine-silty, mixed, mesic Vesser silt loam  Fine, montmorillonitic, mesic | 167*<br>35* |

### CLASSIFICATION INDEX

|                   |                                            | Page      |                                                                                                    | Page         |
|-------------------|--------------------------------------------|-----------|----------------------------------------------------------------------------------------------------|--------------|
| AOUOLI            | MOLLISOL (Continued)                       |           | MOLLISOL (Continued)                                                                               |              |
| AQUOLL            |                                            |           | <u>UDOLL</u> (Continued)                                                                           |              |
| ARGI              | AQUOLL                                     |           | HAPLUDOLL                                                                                          |              |
| T 4               | - A413                                     |           | Tuesda Washindall                                                                                  |              |
|                   | c Argiaquoll , montmorillonitic, mesic     | •         | Typic Hapludoll Coarse-silty, mixed, mesic                                                         |              |
| 1 4-4-4           | Taintor silty clay loam 30/                | 175*      | Keg silt loam                                                                                      | 25           |
|                   | Winterset silty clay loam                  | 179*      |                                                                                                    |              |
|                   | Winterset silty clay loam                  | 181*      | Fine-loamy, mixed, mesic                                                                           | 7*           |
| Fine              | , montmorillonitic, mesic, sloping         |           | Arbor silty clay loam<br>Arbor silt loam                                                           | /*<br>9*     |
| true              | Clarinda silty clay 3/                     | 15*       | Everly silt loam                                                                                   | 37*          |
|                   | · · <del>-</del>                           |           | Everly silt loam                                                                                   | 39*          |
| HAPL              | AQUOLL                                     |           | Kenyon loam                                                                                        | 55*          |
| T 4               | - 4-111                                    |           | Kenyon loam                                                                                        | 57*<br>163*  |
|                   | c Haplaquoll<br>loamy, mixed, mesic        |           | Shelby clay loam, taxadjunct <u>27</u> /<br>Shelby clay loam, variant 28/                          | 165*         |
| 12                | Clyde silt loam                            | 23*       | Shelby loam, taxadjunct 2/                                                                         | 169*         |
|                   | Clyde silt loam                            | 25*       |                                                                                                    |              |
|                   | montrowillandeds monds                     |           | Fine-loamy over sandy or sandy-skeletal,                                                           |              |
| ฐาก               | montenat (landed e monde                   |           | mirchd modele .                                                                                    |              |
|                   |                                            |           |                                                                                                    |              |
|                   |                                            |           |                                                                                                    |              |
|                   |                                            |           |                                                                                                    |              |
|                   |                                            |           |                                                                                                    |              |
|                   | Chequest silty clay loam                   | 9 —       | Wadena loam                                                                                        | 71           |
|                   | Marcus silty clay loam, taxadjunct 5/      | 79*       | Wadena loam                                                                                        | 73           |
|                   | Marna silty clay loam                      | 33        |                                                                                                    |              |
|                   | Marna silty clay loam                      | 35        | Fine-silty, mixed, mesic                                                                           |              |
|                   | Taintor silty clay loam,<br>taxadjunct 29/ | 173*      | Dinsdale silty clay loam,<br>taxadjunct 2/                                                         | 31*          |
|                   | 2011 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1   | 2,3       | Dinsdale silty clay loam,                                                                          |              |
| Cumu              | lic Haplaquoll                             |           | taxadjunct 2/                                                                                      | 33*          |
| Fine              | , montmorillonitic, mesic                  | 0.1.1     | Series not designated (sampled as                                                                  | -11          |
|                   | Marcus silty clay loam, taxadjunct 6/      | 81*<br>79 | Ida) <u>18</u> /<br>Marshall silty clay loam                                                       | 51*<br>37    |
|                   | Zook silty clay loam                       | 19        | Marshall silty clay loam                                                                           | 39           |
| Vert              | ic Haplaquoll                              |           | Marshall silty clay loam                                                                           | 41           |
| Very              | fine, montmorillonitic, mesic              |           | Marshall silty clay loam                                                                           | 43           |
|                   | Luton silty clay                           | 31        | Marshall silty clay loam                                                                           | 45           |
| UDOLL             |                                            |           | Marshall silty clay loam<br>Monona silt loam, acid variant                                         | 47<br>83*    |
| <del>ODOLLE</del> |                                            |           | Monona silt loam, shallow to carbonat                                                              |              |
| ARGI              | UDOLL                                      |           | variant 7/                                                                                         | 85*          |
|                   |                                            |           | Monona silt loam                                                                                   | 87*          |
|                   | c Argiudoll                                |           | Monona silt loam<br>Monona silt loam                                                               | 89*<br>91*   |
| rne               | -loamy, mixed, mesic<br>Cresco loam        | 27*       | Monona silt loam 8/                                                                                | 93*          |
|                   | Shelby clay loam                           | 159*      | Monona silt loam, variant 9/                                                                       | 95*          |
|                   | •                                          |           | Monona silt loam, variant $\overline{7}$ /                                                         | 97*          |
| Fine              | -silty, mixed, mesic                       |           | Monona silt loam, acid variant $\frac{10}{10}$                                                     | 99*          |
|                   | Tama silty clay loam                       | 177*      | Monona silt loam, acid variant $\overline{10}/$<br>Monona silt loam, acid variant $\overline{10}/$ | 101*<br>103* |
| Fine              | , montmorillonitic, mesic                  |           | Monona silt loam 11/                                                                               | 105*         |
|                   | Adair silty clay loam, silty variant       | 3*        | Monona silt loam, variant 7/                                                                       | 107*         |
|                   | Otley silty clay loam                      | 121*      | Sac silty clay loam                                                                                | 141*         |
|                   | Otley silty clay loam                      | 123*      | Sac silt loam                                                                                      | 143*         |
|                   | Sharpsburg silty clay loam 23/             | 149*      | Sharpsburg silty clay loam,                                                                        | 7.754        |
|                   | Sharpsburg silt loam 25/                   | 155*      | taxadjunct <u>21</u> /<br>Sharpsburg silty clay loam, gray                                         | 145*         |
| Agui              | c Argiudoll                                |           | subsoil variant 24/                                                                                | 151*         |
|                   | -loamy, mixed, mesic                       |           | Sharpsburg silty clay loam,                                                                        |              |
|                   | Cresco loam, taxadjunct                    | 29*       | taxadjunct 21/                                                                                     | 153*         |
|                   | Protivin loam                              | 129*      | Blac                                                                                               |              |
|                   | Protivin loam                              | 131*      | Fine, montmorillonitic, mesic Kamrar clay loam                                                     | 21           |
| Fine              | , montmorillonitic, mesic                  |           | Kamrar Clay loam<br>Kamrar clay loam                                                               | 23           |
|                   | Macksburg silty clay loam                  | 73*       | Sharpsburg silty clay loam,                                                                        |              |
|                   | Mahaska silty clay loam                    | 75*       | taxadjunct 22/                                                                                     | 147*         |
|                   | Mahaska silty clay loam                    | 77*       | Shelby clay loam, taxadjunct 26/                                                                   | 157*         |
|                   | Seymour silt loam                          | 63        | Shelby clay loam, taxadjunct $\overline{26}$ /                                                     | 161*         |
|                   | Seymour silt loam                          | 65<br>67  |                                                                                                    |              |
|                   | Seymour silt loam                          | 07        |                                                                                                    |              |

### Page

|          | MOLTITOOD   | (COULTIN |
|----------|-------------|----------|
| IIIOI I. | (Continued) |          |

HAPLUDOLL (Continued)

| Aquic Hapludoll                  |      |
|----------------------------------|------|
| Fine-loamy, mixed, mesic         |      |
| Readlyn loam                     | 133* |
| Readlyn loam                     | 135* |
| Fine-silty, mixed, mesic         |      |
| Klinger silty clay loam          | 59*  |
| Klinger silt loam                | 61*  |
| Muscatine silty clay loam        | 109* |
| Muscatine silty clay loam        | 111* |
| Primghar silty clay loam         | 125* |
| Primghar silty clay loam         | 127* |
| Fine, montmorillonitic, mesic    |      |
| Guckeen clay loam                | 13   |
| Guckeen clay loam                | 15   |
| Macksburg silty clay loam,       |      |
| taxadjunct 2/                    | 67★  |
| Macksburg silty clay loam,       |      |
| taxadjunct 2/                    | 69*  |
| Macksburg silty clay loam,       |      |
| taxadjunct 2/                    | 71*  |
| Cumulic Hapludoll                |      |
| Fine-loamy, mixed, mesic         |      |
| Olmitz silty clay loam,          |      |
| taxadjunct 14/                   | 117* |
| Olmitz silty clay loam           | 119* |
| Fine-silty, mixed, mesic         |      |
| Napier silt loam, taxadjunct 12/ | 113* |
| Napier silt loam, variant $13/$  | 115* |

<sup>\*</sup>Page number refers to SSIR No. 3 2/ through 30/--see SOIL SERIES INDEX footnotes.

### CLASSIFICATION INDEX FOR

SSIR No. 3

|       | ALFISOL                                                                  | Page     | MOLLISOL                                                             | Page           |
|-------|--------------------------------------------------------------------------|----------|----------------------------------------------------------------------|----------------|
| AQUA  |                                                                          |          | ALBOLL                                                               |                |
|       | OCHRAQUALF                                                               |          | ARGIALBOLL                                                           |                |
|       | Udollic Ochraqualf                                                       |          | Typic Argialbol1                                                     |                |
|       | Fine-loamy, mixed, mesic Riceville loam                                  | 137      | Fine, montmorillonitic, mesic<br>Edina silt loam                     | 35             |
|       | Riceville loam                                                           | 139      |                                                                      | •-             |
| UDAL. | <u>F</u>                                                                 |          | AQUOLL                                                               |                |
|       | HAPLUDALF                                                                |          | ARGIAQUOLL                                                           |                |
|       |                                                                          |          | Typic Argiaquol1                                                     |                |
|       | Typic Hapludalf Fine-losmy, mixed, mesic                                 |          | Fine, montmorillonitic, mesic Taintor silty clay loam 30/            | 175            |
|       | Series not designated (sampled                                           |          | Winterset silty clay loam                                            | 179            |
|       | as Bonair loam) <u>16/</u><br>Series not designated (sampled             | 11       | Winterset silty clay loam                                            | 181            |
|       | as Bonair loam) 16/                                                      | 13       | Fine, montmorillonitic, mesic, sloping<br>Clarinda silty clay 3/     | 15             |
|       | Fine-silty, mixed, mesic                                                 | 4.1      | · · · · · ·                                                          |                |
|       | Fayette silt loam<br>Fayette silt loam                                   | 41<br>43 | HAPLAQUOLL                                                           |                |
|       | Fayette silt loam                                                        | 45       | Typic Haplaquol1                                                     |                |
|       | Fine, montmorillonitic, mesic                                            |          | Fine-loamy, mixed, mesic<br>Clyde silt loam                          | 23             |
|       | Clinton silt loam                                                        | 19       | Clyde silt loam                                                      | 25             |
|       | Clinton silt loam<br>Series not designated (sampled                      | 21       | Fine, montmorillonitic, mesic                                        |                |
|       | as Adair) 15/                                                            | 5        | Marcus silty clay loam, taxadjunct 5/<br>Taintor silty clay loam,    | 7 <del>9</del> |
|       | Aquollic Hapludalf                                                       |          | taxadjunct 29/                                                       | 173            |
|       | Fine-loamy, mixed, mesic<br>Lourdes loam                                 | 63       | Cumulic Haplaquol1                                                   |                |
|       | Lourdes loam                                                             | 65       | Fine, montmorillonitic, mesic  Marcus silty clay loam, taxadjunct 6/ | 81             |
|       | Mollic Hapludalf                                                         |          |                                                                      |                |
|       | Fine, montmorillomitic, mesic<br>Series not designated (sampled          |          | <u>udoll</u>                                                         |                |
|       | es Shelby) 20/                                                           | 171      | ARGIUDOLL                                                            |                |
|       | ENTISOL                                                                  |          | Typic Argiudoll                                                      |                |
| ORTH  | ENT                                                                      |          | Fine-loamy, mixed, mesic<br>Cresco loam                              | 27             |
| 1     | UDORTHENT                                                                |          | Shelby clay loam                                                     | 159            |
|       | Typic Udorthent                                                          |          | Fine-silty, mixed, mesic                                             |                |
|       | Coarse-silty, mixed (calcareous), mesic<br>Hamburg silt loam             | 47       | Tama silty clay loam                                                 | 177            |
|       | Ida silt loam, taxadjunct 4/                                             | 53       | Fine, montmorillonitic, mesic                                        |                |
|       | Fine-silty, mixed (calcareous), mesic                                    |          | Adair silty clay loam, variant<br>Otley silty clay loam              | 3<br>121       |
|       | Ida silt loam                                                            | 49       | Otley silty clay loam                                                | 123            |
|       | INCEPTISOL                                                               |          | Sharpsburg silty clay loam 23/                                       | 149            |
| AQUE  |                                                                          |          | Sharpsburg silty clay loam 25/                                       | 155            |
|       | HAPLAQUEPT                                                               |          | Aquic Argiudoll                                                      |                |
|       | nn Laquet I                                                              |          | Fine-loamy, mixed, mesic<br>Cresco loam, taxadjunct                  | 29             |
|       | Typic Haplaquept                                                         |          | Protivin loam                                                        | 129            |
|       | Fine, montmorillonitic, mesic, sloping<br>Series not designated (sampled |          | Protivin loam                                                        | 131            |
|       | as Clarinda) 17/                                                         | 17       | Fine, montmorillonitic, mesic                                        |                |
| OCHR  | EPT                                                                      |          | Macksburg silty clay loam<br>Mahaska silty clay lo <i>a</i> m        | 73<br>75       |
|       | <del></del> -                                                            |          | Mahaska silty clay loam                                              | 77             |
|       | EUTROCHREPT                                                              |          | HAPLUDOLL                                                            |                |
|       | Typic Eutrochrept Fine-loamy, mixed, mesic                               |          | Typic Hapludoll                                                      |                |
|       | Series not designated (sampled                                           |          | Fine-losmy, mixed, mesic                                             |                |
|       | as Shelby) 19/                                                           | 167      | Arbor silty clay loam                                                | 7              |
|       |                                                                          |          | Arbor silt loam<br>Everly silt loam                                  | 9<br>37        |
|       |                                                                          |          | Everly silt loam                                                     | 39             |
|       |                                                                          |          | Kenyon loam<br>Kenyon loam                                           | 55<br>57       |
|       |                                                                          |          | •                                                                    |                |

# CLASSIFICATION INDEX FOR SSIR No. 3

Page

MOLLISOL (Continued)

UDOLL (Continued)

| HAPLUDOLL (Continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Typic Hapludoll (Continued) Fine-loamy, mixed, mesic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| Shelby clay loam, taxadjunct 27/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 163        |
| Shelby clay loam, taxadjunct 27/<br>Shelby clay loam, variant 28/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 165        |
| Shelby loam, taxadjunct 2/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 169        |
| Fine-silty, mixed, mesic Dinsdale silty clay loam, taxadjunct 2/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31         |
| Dinsdale silty clay loam, taxadjunct 2/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33         |
| Series not designated (sampled as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| Ida) <u>18</u> /<br>Monona silt loam, acid variant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 51         |
| Monona silt loam, acid variant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 83         |
| Monona silt loam, shallow to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 85         |
| carbonates variant 7/<br>Monona silt loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 87         |
| Monona silt loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 89         |
| Monona silt loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 91         |
| Monona silt loam 8/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 93         |
| Monona silt loam, variant $9/$ Monona silt loam, variant $\overline{7}/$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 95         |
| Monona silt loam, variant $\overline{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97         |
| Monona silt loam, acid variant 10/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99         |
| Monona silt loam, acid variant $\overline{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 101        |
| Monona silt losm, acid variant $\frac{10}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 103        |
| Monona silt loam 11/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 105        |
| Monona silt loam, variant 7/<br>Sac silty clay loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 107<br>141 |
| Sac silt loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 143        |
| Sharpsburg silty clay loam,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 142        |
| taxadjunct 21/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 145        |
| Sharpsburg silty clay loam, gray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| subsoil variant 24/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 151        |
| Sharpsburg silty clay loam,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| taxadjunct 21/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 153        |
| rden annanced 17 and adv mand -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Fine, montmorillonitic, mesic<br>Sharpsburg silty clay loam,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| taxadjunct 22/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 147        |
| Shelby clay loam, taxadjunct 26/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 157        |
| Shelby clay losm, taxadjunct $\frac{26}{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 161        |
| A / W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| Aquic Hapludoll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Fine-loamy, mixed, mesic Readlyn loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 133        |
| Readlyn loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 135        |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| Fine-silty, mixed, mesic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -          |
| Klinger silty clay loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59         |
| Klinger silt loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61<br>109  |
| Muscatine silty clay loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 111        |
| Muscatine silty clay loam<br>Primghar silty clay loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 125        |
| Primghar silty clay loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 127        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Fine, montmorillonitic, mesic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| Macksburg silty clay loam,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 67         |
| taxadjunct 2/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 67         |
| Macksburg silty clay loam, taxadjunct 2/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 69         |
| Macksburg silty clay loam,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| taxadjunct 2/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 71         |
| and the state of t |            |
| Cumulic Hapludoll Fine-loamy, mixed, mesic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| Olmitz silty clay loam, taxadjunct 14/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 117        |
| Olmitz silty clay loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Fine-silty, mixed, mesic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| Napier silt losm, taxadjunct $\frac{12}{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 113        |
| Napier silt loam, variant $13/$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 115        |
| orani di manana di M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |

<sup>2/</sup> through 30/--see SOIL SERIES INDEX footnotes.

### GEOGRAPHICAL INDEX

| Classification                       | Soil Series                                             | Page         | Classification                 | Soil Series                                                    | Page         |
|--------------------------------------|---------------------------------------------------------|--------------|--------------------------------|----------------------------------------------------------------|--------------|
| ADAIR CO                             | UNTY                                                    |              | CASS COU                       | NTY                                                            |              |
| Inceptisol<br>Ochrept<br>Entrochrent | Series not designated (sampled                          |              | Mollisol<br>Udoll<br>Hapludoll | Marshall silty clay losm                                       | 37           |
| •                                    | as Shelby) 19/                                          | 167*         | ushingoti                      | Marshall silty clay loam<br>Marshall silty clay loam           | 39<br>41     |
| Mollisol<br>Udoll                    | ·                                                       |              | CLAY COU                       | N T Y                                                          |              |
| Argiudoll                            | Sharpsburg silty clay loam 23/<br>Shelby clay loam      | 149*<br>159* | Mollisol<br>Aquoll             |                                                                |              |
| Hapludoll                            | Arbor silty clay loam                                   | 7*           | Haplaquo11                     | Marcus silty clay loam,<br>taxadjunct 5/                       | 79*          |
|                                      | Arbor silt loam<br>Macksburg silty clay loam,           | 9*           | Udoll                          | • <b>-</b>                                                     |              |
|                                      | taxadjumet 2/<br>Macksburg silty clay loam,             | 67*          | Hapludell                      | Everly silt loam<br>Everly silt loam                           | 37*<br>39*   |
|                                      | taxadjunct 2/<br>Macksburg silty clay loam,             | 69*          |                                | Primghar silty clay loam Sac silty clay loam                   | 125*<br>141* |
|                                      | texadjunct 2/                                           | 71*          |                                | Sac silt loam                                                  | 143*         |
|                                      | Olmitz silty clsy loam,<br>taxadjunct 14/               | 117*         |                                | Wadena loam<br>Wadena loam                                     | 71<br>73     |
|                                      | Olmitz silty clay loam<br>Sharpsburg silty clay loam,   | 119*         | CLAYTON                        | COUNTY                                                         |              |
|                                      | taxadjunct 21/<br>Sharpsburg silty clay loam,           | 145*         | Alfisol                        |                                                                |              |
|                                      | texadjunct 22/<br>Sharpsburg silty clay loam,           | 147*         | Vdalf<br>Hapludalf             | Fayette silt loam                                              | .1*          |
|                                      | gray subsoil variant 24/<br>Sharpsburg silty clay loam, | 151*         | • • • •                        |                                                                |              |
|                                      | taxadjunct 21/                                          | 153*         |                                | COUNTY                                                         |              |
|                                      | Shelby clay loam,<br>taxadjunct 26/                     | 157*         | Entisol<br>Orthent             |                                                                |              |
|                                      | Shelby clay loam,<br>taxadjunct 26/                     | 161*         | Udorthent                      | Hamburg silt loam<br>Ida silt loam                             | 47*<br>49*   |
|                                      | Shelby clay loam,<br>taxadjunct 27/                     | 163*         | GRUNDY C                       | OUNTY                                                          |              |
|                                      | Shelby clay loam, variant 28/                           | 165*         | Mollisol                       | <del></del>                                                    |              |
| APPANOOS                             | E COUNTY                                                |              | Udoll<br>Hapludoll             | Dinsdale silty clay loam                                       |              |
| Alfisol<br>Aqualf                    |                                                         |              |                                | taxadjunct 2/<br>Muscatine silty clay loam                     | 33*<br>111*  |
| Albaqualf                            | Appanoose silt loam                                     | 5<br>7       |                                |                                                                | 111"         |
|                                      | Appanoose silt loam                                     |              | HAMILTON                       | COUNTY                                                         |              |
| Ochraqualf                           | Choppock silt loam<br>Kniffin silt loam                 | 11<br>27     | Mollisol<br>Aquoll             |                                                                |              |
| · . <u> </u>                         | Rathbun silt loam                                       | 53           | Hanlanuoll                     | Marns silty clay losm                                          | 35           |
|                                      |                                                         |              |                                |                                                                |              |
| Mollisol<br>Aquoll                   |                                                         |              | Udoll<br>Hapludoll             | Guckeen clay loam                                              | 13           |
| Haplaquoll                           | Chequest silty clay loam                                | 9            |                                | Kamrar clay loam<br>Kamrar clay loam                           | 21<br>23     |
| BENTON C                             | <u>OUNTY</u>                                            |              | HARRISON                       | COUNTY                                                         |              |
| Mollisol<br>Udoll                    |                                                         |              | Entisol                        |                                                                |              |
| Hapludo11                            | Muscatine silty clay loam                               | 109*         | Orthent<br>Udorthent           | Ida silt loam, taxadjunct 4/                                   | 53*          |
| BLACK HA                             | WK COUNTY                                               |              | Mollisol                       | rae sile ivan, caracjance in                                   |              |
| Mollisol                             |                                                         |              | Udoll                          |                                                                |              |
| Udoll<br>Hapludoll                   | Dinsdale silty clay loam,                               | •            | Hapludol1                      | Series not designated (sampled as Ida) 28/                     | 51*          |
|                                      | taxadjunct 2/                                           | 31*          |                                | Monona silt loam, acid variant<br>Monona silt loam, shallow to | 83*          |
| BREMER C Mollisol                    | <u>OUNTY</u>                                            |              |                                | carbonates variant 7/ Monona silt loam                         | 85*<br>87*   |
| Udoll                                | <b>7</b>                                                | £ 5.4        |                                | Monona silt loam<br>Monona silt loam                           | 89*<br>91*   |
| Hapludol1                            | Kenyon losm<br>Kenyon losm                              | 55*<br>57*   |                                | Monona silt loam 8/                                            | 93*          |
|                                      | Klinger silty clay loam<br>Klinger silt loam            | 59*<br>61*   |                                | Monona silt loam, variant 9/ Monona silt loam, variant 7/      | 95*<br>97*   |
|                                      | Readlyn loam<br>Readlyn loam                            | 133*<br>135* |                                | Monona silt loam, acid<br>Variant 10/                          | 99*          |
|                                      | ·                                                       | 100          |                                | Monona silt loam, acid<br>variant 10/                          | 101*         |
|                                      |                                                         |              |                                |                                                                |              |

### GEOGRAPHICAL INDEX

| Classification                          | Soil Series                                          | <u>Page</u>  | Classification                          | Soil Series                                             | Page     |
|-----------------------------------------|------------------------------------------------------|--------------|-----------------------------------------|---------------------------------------------------------|----------|
| HARRISON                                | C O U N T Y (Continued)                              |              | MONONA C                                | OUNTY                                                   |          |
| Mollisol (Continued)                    |                                                      |              | Entisol                                 |                                                         |          |
| Udoll (Continued) Hapludoll (Continued) |                                                      |              | Aquent<br>Fluvaquent                    | Albaton silty clay                                      | 3        |
|                                         | Monona silt loam, acid<br>variant <u>10</u> /        | 103*         | Fluvent                                 |                                                         |          |
|                                         | Monona silt loam 11/<br>Monona silt loam, variant 7/ | 105*<br>107* | Udifluvent                              | Haynie silt loam<br>Modale silt loam                    | 17<br>49 |
|                                         | Napier silt loam,                                    |              |                                         | and a stif town                                         | 49       |
|                                         | taxadjunct $\frac{12}{100}$                          | 113*         | Mollisol<br>Aquoll                      |                                                         |          |
|                                         | taxadjunct <u>13</u> /                               | 115*         | Haplaquoll                              | Luton silty clay                                        | 31       |
| HOWARD C                                | OUNTY                                                |              | Udoll                                   |                                                         |          |
| Alfisol                                 |                                                      |              | Hapludo11                               | Keg silt loam                                           | 25       |
| Aqualf<br>Ochraqualf                    | Riceville loam                                       | 137*         | MONROE C                                | OUNTY                                                   |          |
|                                         | Riceville loam                                       | 139*         | Alfisol                                 |                                                         |          |
| Udalf                                   |                                                      |              | Aqualf<br>Ochraqualf                    | Pershing silt loam                                      | 51       |
| Hapludalf                               | Series not designated (sampled as Bonair)            | 11*          | Udalf                                   |                                                         |          |
|                                         | Series not designated (sampled as Bonair)            | 13*          | Hapludalf                               | Weller silt loam                                        | 75       |
|                                         | Lourdes loam                                         | 63*          | O'BRIEN                                 | COUNTY                                                  |          |
|                                         | Lourdes loam                                         | 65*          | Mollisol                                |                                                         |          |
| Mollisol                                |                                                      |              | Aquo11                                  |                                                         |          |
| Aquoll<br>Haplaquoll                    | Clyde silt loam                                      | 23*          | Haplaquoll                              | Marcus silty clay loam,<br>taxadjunct 6/                | 81*      |
|                                         | Clyde silt loam                                      | 25*          | Udoll                                   | •                                                       |          |
| Udoll                                   |                                                      |              | Hapludoll                               | Primghar silty clay loam                                | 127*     |
| Argiudoll                               | Cresco loam<br>Cresco loam                           | 27*<br>29*   | POLK COU                                | N T Y                                                   |          |
|                                         | Protivin loam<br>Protivin loam                       | 129*<br>131* |                                         | <del></del>                                             |          |
|                                         |                                                      | 131"         | Mollisol<br>Udoll                       |                                                         |          |
| JACKSON                                 | COUNTY                                               |              | Argiudol1                               | Sharpsburg silt loam 25/                                | 155*     |
| Alfisol<br>Udalf                        |                                                      |              | SHELBY C                                | OUNTY                                                   |          |
| Hapludalf                               | Fayette silt loam                                    | 43*          | Alfisol                                 |                                                         |          |
| KEOKUK C                                | O U N T Y                                            |              | Udalf<br>Hapludalf                      | Series not designated (sampled                          |          |
| Mollisol                                |                                                      |              |                                         | as Adair) <u>15</u> /<br>Series not designated (sampled | 5*       |
| Aquoll                                  |                                                      |              |                                         | as Shelby) 20/                                          | 171*     |
| Haplaquoll                              | Taintor silty clay loam,<br>taxadjunct 29/           | 173*         | Inceptisol                              |                                                         |          |
| Udo11                                   |                                                      |              | Aquept<br>Haplaquept                    | Series not designated (sampled                          |          |
| Argiudoll                               | Mahaska silty clay loam<br>Otley silty clay loam     | 75*<br>121*  | *************************************** | as Clarinda) 17/                                        | 17*      |
|                                         | Otley Silty Clay loam                                | 121          | Mollisol                                |                                                         |          |
| LINN COU                                | NTY                                                  |              | Aquoll<br>Argiaquoll                    | Clarinda silty clay 3/                                  | 15*      |
| Alfisol                                 |                                                      |              | -                                       |                                                         |          |
| Udalf<br>Hapļudalf                      | Fayette silt loam                                    | 45*          | Udoll<br>Argiudoll                      | Adair silty clay loam, silty                            |          |
| LUCAS CO                                | UNTY                                                 |              |                                         | variant                                                 | 3*       |
|                                         |                                                      |              | Hapludol1                               | Marshall silty clay loam                                | 43       |
| Alfisol<br>Udalf                        |                                                      |              |                                         | Marshall silty clay loam<br>Marshall silty clay loam    | 45<br>47 |
| Hapludalf                               | Weller silt loam                                     | 77           |                                         | Shelby loam, taxadjunct $\frac{2}{}$                    | 169*     |
| MADISON                                 | COUNTY                                               |              | TAMA COUI                               | N T Y                                                   |          |
| Mollisol                                |                                                      |              | Mollisol                                |                                                         |          |
| Aquoll<br>Argiaquoll                    | Winterset silty clay loam                            | 179*         | Udoll<br>Argiudoll                      | Tama silty clay loam                                    | 177*     |
| Ş 3 <del></del>                         | Winterset silty clay loam                            | 181*         | <b>J</b> -                              | •                                                       |          |
| Udol1                                   |                                                      | ***          |                                         |                                                         |          |
| Argiudoll                               | Macksburg silty clay loam                            | 73*          |                                         |                                                         |          |

### GEOGRAPHICAL INDEX

| Classification    | Soil Series                     | Page |
|-------------------|---------------------------------|------|
| WASHINGT          | ON COUNTY                       |      |
| Alfisol           |                                 |      |
| Udalf             |                                 |      |
| Hapludalf         | Clinton silt loam               | 19*  |
|                   | Clinton silt loam               | 21*  |
| Mollisol          |                                 |      |
| Aquol1            | ·                               |      |
| Argiaquoll        | Taintor silty clay loam 30/     | 175* |
| Udoll             |                                 |      |
| Argiudoll         | Mahaska silty clay loam         | 77*  |
| <del>-</del>      | Otley silty clay loam           | 123* |
| WAYNE CO          | UNTY                            |      |
| Alfisol<br>Aqualf |                                 |      |
| Ochraqualf        | Kniffin silt loam               | 29   |
|                   | Rathbun silt loam               | 55   |
|                   | Series not designated (sampled  |      |
|                   | as Seymour)                     | 57   |
|                   | Spains, not designated (compled |      |
|                   |                                 |      |

|                    | ga Cormon*\                                | <u>50</u> |
|--------------------|--------------------------------------------|-----------|
|                    |                                            |           |
|                    | Series not designated (sampled as Seymour) | 61        |
| Mollisol<br>Alboll |                                            |           |
| Argialboll         | Edina silt loam                            | 35*       |
| •                  | Humeston silty clay loam                   | 19        |
|                    | Vesser silt loam                           | 69        |
| Aquo11             |                                            |           |
| Haplaquoll         | Zook silty clay loam                       | 79        |
| Udo11              |                                            |           |
| Argiudo11          | Seymour silt loam                          | 63        |
| _                  | Seymour silt loam                          | 65        |
|                    | Seymour silt loam                          | 67        |
| WEBSTER            | COUNTY                                     |           |
| Mollisol           |                                            |           |
| Aquoll             |                                            |           |
| Haplaquol1         | Marna silty clay loam                      | 33        |
| Udol1              |                                            |           |
| Hapludoll          | Guckeen clay loam                          | 15        |
| #Pogo nimber       | refers to SSIR No. 3                       |           |

<sup>\*</sup>Page number refers to SSIR No. 3. 2/ through 30/--see SOIL SERIES INDEX footnotes.

|                                             | Soil Survey               |                      |                    |
|---------------------------------------------|---------------------------|----------------------|--------------------|
| Series                                      | No. 1/                    | Classification       | Page               |
| · · · · · · · · · · · · · · · · · · ·       | <del></del>               | <del> </del>         |                    |
| Adair silty clay loam, silty variant        | S531A-83-2                | Argiudoll            | 3*                 |
| Albaton silty clay                          | S701A-67-5                | Fluvaquent           | 3                  |
| Appanoose silt loam                         | \$691A-4-1                | Albaqualf            | . 5                |
| Appanoose silt loam                         | S691A-4-3                 | Albaqualf            | 7                  |
| Arbor silty clay loam, taxadjunct           | \$561A-1-1                | Hapludol1            | 7*                 |
| Arbor loam, taxadjunct                      | S561A-1-2                 | Hapludol1            | 9*                 |
| Chequest silty clay loam                    | S711A-4-2                 | Haplaquoll           | 9                  |
| Clarinda silty clay                         | S53IA-83-4                | Argiaquol1 3/        | 15*                |
| Clinton silt loam                           | <b>Z-1</b> -2-8-(245-254) | Hapludalf            | 19*                |
| Clinton silt loam                           | <b>z-1-2-</b> 8-(264-273) | Hapludalf            | 21*                |
| Clyde silt loam                             | S561A-45-4                | Haplaquol1           | 23*                |
| Clyde silt loam                             | S56IA-45-10               | Haplaquoll           | 25*                |
| Coppock silt loam                           | S711A-4-1                 | Ochraqualf           | 11                 |
| Cresco loam                                 | 8561A-45-1                | Argiudoll            | 27*                |
| Cresco loam                                 | S561A-45-9                | Argiudol1            | 29*                |
| Dinadale silty clay loam, taxadjunct        | S601A-7-1                 | Hapludoll 2/         | 31*                |
| Dinsdale silty clay loam, taxadjunct        | S601A-38-2                | Hapludo11 <u>2</u> / | 33*                |
| Edina silt loam                             | \$561A-93-1               | Argialboll           | 35*                |
| Everly silt loam                            | S591A-21-7                | Hapludoll            | 37*                |
| Everly silt loam                            | \$59IA-21-8               | Hapludol1            | 39*                |
| Fayette silt loam                           | \$591A-22-1               | Hapludalf            | 41*<br>43*         |
| Fayette silt loam                           | Z-1-2-8 (223-233)         | Hapludalf            |                    |
| Fayette silt loam                           | Z-1-2-8 (285-295)         | Hapludalf            | 45*                |
| Guckeen clay loam                           | S64IA-40-3                | Hapludoll            | 13                 |
| Guckeen clay loam                           | S641A-94-2                | Hapludo11            | 15                 |
| Hamburg silt loam                           | S611A-36-1                | Udorthent            | 47*                |
| Haynie silt loam                            | S701A-67-3                | Udifluvent           | 17                 |
| Humeston silty clay loam                    | S711A-93-2                | Argialbol1           | 19                 |
| Ida silt loam                               | S611A-36-2                | Udorthent            | 49*                |
| Ida silt loam , taxadjunct                  | S591A-43-7                | Udorthent 4/         | 53*                |
| Kamrar clay loam                            | S641A-40-1                | Hapludo11            | 21                 |
| Kamrar clay loam                            | S641A-40-2                | Hapludol1            | 23                 |
| Keg silt loam                               | S701A-67-2                | Hapludoll            | 25                 |
| Kenyon loam                                 | S601A-9-1                 | Hapludo11            | 55*                |
| Kenyon loam                                 | S601A-9-3                 | Hapludoll            | 5 <b>7*</b>        |
| Klinger silty clay loam                     | S601A-9-5                 | Hapludo11            | 59*                |
| Klinger silt loam                           | S601A-9-6                 | Hapludoll            | 61*                |
| Kniffin silt loam                           | S69IA-4-2                 | Ochraqualf           | 27                 |
| Kniffin silt loam                           | S691A-93-1                | Ochraqualf           | 29                 |
| Lourdes loam                                | \$561A-45-5               | Hapludalf            | 63*                |
| Lourdes loam                                | S561A-45-7                | Hapludalf            | 65*                |
| Luton silty clay                            | 5701A-67-1                | Haplaquoll           | 31                 |
| Macksburg silty clay loam, taxadjunct       | S61IA-1-1                 | Hapludoll <u>2</u> / | 67*                |
| Macksburg silty clay loam, taxadjunct       | \$551A-1-1                | Hapludoll 2/         | 69*                |
| Macksburg silty clay loam, taxadjunct       | 8551A-1-2                 | Hapludoll <u>2</u> / | 71*                |
| Macksburg silty clay loam                   | S611A-61-1                | Argiudoll            | 73*                |
| Mahaska silty clay loam                     | S611A-54-1                | Argiudoll            | 75*                |
| Mahaska silty clay loam                     | S611A-92-2                | Argiudoll            | 77 <b>★</b>        |
| Marcus silty'clay loam, taxadjunct          | 5591A-21-3                | Haplaquoll 5/        | 79*                |
| Marcus silty clay loam, taxadjunct          | 8591A-71-1                | Haplaquoll 6/        | 81*                |
| Marna silty clay loam                       | S64IA-94-1                | Haplaquol1           | 33                 |
| Marna silty clay loam                       | S64IA-40-4                | Haplaquol1           | 35                 |
| Marshall silty clay loam                    | S63IA-15-1                | Hapludol1            | 37                 |
| Marshall silty clay loam                    | S631A-15-2                | Hapludoll            | 39                 |
| Marshall silty clay loam                    | S63IA-15-3                | Hapludol1            | 41                 |
| Marshall silty clay loam                    | S63IA-83-1                | Hapludol1            | 43                 |
| Marshall silty clay loam                    | S631A-83-2                | Hapludoll            | 45<br>47           |
| Marshall silty clay loam                    | S631A-83-3                | Hapludoll            | 47                 |
| Modale silt loam                            | S701A-67-4                | Udifluvent           | 49<br>83*          |
| Monona silt loam, acid variant              | \$581A-43-1               | Hapludoll            | 85*                |
| Monona silt loam, shallow carbonate variant | S581A-43-2                | Hapludoll 7/         | 87*                |
| Monona silt loam                            | S58IA~43-3                | Hapludoll            | 89*                |
| Monona silt loam                            | S58IA-43-4                | Hapludoll            | 91*                |
| Monona silt loam                            | S581A-43-7                | Hapludoll            | 93*                |
| Monona silt loam                            | \$581A-43-8               | Hapludoll 8/         | 95*                |
| Monona silt loam, variant                   | \$591A-43-1               | Hapludoll 9/         | 97 <b>*</b>        |
| Monona silt loam, variant                   | \$591A-43-2               | Hapludoll 7/         | 9/ <b>*</b><br>99* |
| Monoma silt loam, acid variant              | S591A-43-3                | Hapludoll 10/        | ,,,,               |

| \$UIL.                                                                            | SERIES INDEX                          |                                                   |              |
|-----------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------|--------------|
|                                                                                   | Soil Survey                           |                                                   |              |
| Series                                                                            | No. <u>1</u> /                        | Classification                                    | Page         |
|                                                                                   |                                       |                                                   |              |
| Monona silt loam, acid variant                                                    | S59IA-43-4                            | Hapludoll 10/                                     | 101*         |
| Monona silt loam, acid variant                                                    | \$591A-43-5                           | Hapludoll 10/                                     | 103*         |
| Monona silt loam<br>Monona silt loam, variant                                     | S591A-43-6<br>S591A-43-8              | Hapludoll <u>11</u> /<br>Hapludoll <del>7</del> / | 105*<br>107* |
| Muscatine silty clay loam                                                         | S601A-6-1 (1-15)                      | Hapludoll                                         | 109*         |
| Muscatine silty clay loam                                                         | S60IA-38-1 (1-11)                     | Hapludoll                                         | 111*         |
| • •                                                                               | (=,                                   |                                                   |              |
| Napier silt loam, taxadjunct                                                      | S581A-43-6                            | Hapludoll <u>12</u> /                             | 113*         |
| Napier silt loam, variant                                                         | S581A-43-9                            | Hapludoll <u>13</u> /                             | 115*         |
| Olmitz eilty elev loom tavadimet                                                  | S56IA-1-3                             | Hapludoll 14/                                     | 117*         |
| Olmitz silty clay loam, taxadjunct Olmitz silty clay loam                         | S56IA-1-4                             | Hapludoll 14/                                     | 119*         |
| Otley silty clay loam                                                             | S61IA-54-2                            | Argiudoll                                         | 121*         |
| Otley silty clay loam                                                             | S61IA-92-1                            | Argiudoll                                         | 123*         |
|                                                                                   |                                       | •                                                 |              |
| Pershing silt loam                                                                | S69IA-68-2                            | Ochraqualf                                        | 51           |
| Primghar silty clay loam                                                          | \$591A-21-4 (1-10)                    | Hapludoll                                         | 125*         |
| Primghar silty clay loam<br>Protivin loam                                         | \$591A-71-2 (1-9)                     | Hapludoll                                         | 127*<br>129* |
| Protivin loam                                                                     | S561A-45-2 (1-9)<br>S561A-45-3 (1-11) | Hapludoll<br>Argiudoll                            | 131*         |
|                                                                                   | 330IN-43 3 (1=11)                     | AL GIGGOII                                        | 131          |
| Rathbum silt loam                                                                 | S69IA-4-4                             | Ochraqualf                                        | 53           |
| Rathbun silt loam                                                                 | S691A-93-2                            | Ochraqualf                                        | 55           |
| Readlyn loam                                                                      | S601A-9-2 (1-9)                       | Hapludoll                                         | 133*         |
| Readlyn loam                                                                      | S601A-9-4 (1-11)                      | Hapludoll                                         | 135*         |
| Riceville loam                                                                    | S56IA-45-6 (1-11)                     | Ochraqualf                                        | 137*         |
| Riceville loam                                                                    | S561A-45-8 (1-10)                     | Ochraqualf                                        | 139*         |
| Sac silty clay loam                                                               | S591A-21-5 (1-8)                      | Hapludoll                                         | 141*         |
| Sac silt loam                                                                     | S59IA-21-6 (1-8)                      | Hapludoll                                         | 143*         |
| Series not designated (sampled as Adair)                                          | S55IA-83-2                            | Hapludalf 15/                                     | 5*           |
| Series not designated (sampled as Bonair)                                         | S56IA-45-11 (1-10)                    | Hapludalf 16/                                     | 11*          |
| Series not designated (sampled as Bonair)                                         | S56IA-45-12 (1-11)                    | Hapludalf $\overline{16}$ /                       | 13*          |
| Series not designated (sampled as Clarinda)                                       | S551A-83-1                            | Haplaquept 17/                                    | 17*          |
| Series not designated (sampled as Ida) Series not designated (sampled as Seymour) | S58IA-43-5                            | Hapludoll 18/                                     | 51*          |
| Series not designated (sampled as Seymour)                                        | S62IA-93-1<br>S62IA-93-4              | Ochraqualf<br>Ochraqualf                          | 57<br>59     |
| Series not designated (sampled as Seymour)                                        | S62IA-93-5                            | Ochraqualf                                        | 61           |
| Series not designated (sampled as Shelby)                                         | S56IA-1-10                            | Eutrochrept 19/                                   | 167*         |
| Series not designated (sampled as Shelby)                                         | \$531A-83-3                           | Hapludalf 207                                     | 171*         |
| Seymour silt loam                                                                 | S62IA-93-2                            | Argiudoll                                         | 63           |
| Seymour silt loam                                                                 | S621A-93-3                            | Argiudoll                                         | 65           |
| Seymour silt loam                                                                 | S621A-93-6                            | Argiudoll                                         | 67           |
| Sharpsburg silty clay loam, taxadjunct<br>Sharpsburg silty clay loam, taxadjunct  | S55IA-1-3<br>S55IA-1-4                | Hapludoll $\frac{21}{22}$ /                       | 145*<br>147* |
| Sharpsburg silty clay loam                                                        | S551A-1-5                             | Argiudoll 23/                                     | 149*         |
| Sharpsburg silty clay loam, gray subsoil variant                                  | S55IA-1-6                             | Hapludoll 24/                                     | 151*         |
| Sharpsburg silty clay loam, taxadjunct                                            | S56IA-1-11                            | Hapludoll 21/                                     | 153*         |
| Sharpsburg silt loam                                                              | <b>S511A-77-7 (1-9)</b>               | Argiudoll 25/                                     | 155*         |
| Shelby clay loam, taxadjunct                                                      | S56IA-1-5                             | Hapludoll $\frac{26}{}$                           | 157*         |
| Shelby clay loam                                                                  | \$561A-1-6                            | Argiudoll                                         | 159*         |
| Shelby clay loam, taxadjunct<br>Shelby clay loam, taxadjunct                      | S56IA-1-7<br>S56IA-1-8                | Hapludoll <u>26/</u><br>Hapludoll <u>27/</u>      | 161*         |
| Shelby clay loam, variant                                                         | S561A-1-9                             | Hapludoll 28/                                     | 163*<br>165* |
| Shelby loam, taxadjunct                                                           | S551A-83-3                            | Hapludoll 2/                                      | 169*         |
| <del>-</del>                                                                      |                                       | • =                                               |              |
| Taintor silty clay loam, taxadjunct                                               | S61IA-54-3                            | Haplaquoll <u>29</u> /                            | 173*         |
| Taintor silty clay loam                                                           | S611A-92-3                            | Argiaquol1 <u>30</u> /                            | 175*         |
| Tama silty clay loam                                                              | S591A-86-1                            | Argiudoll                                         | 177*         |
| Vesser silt loam                                                                  | S71IA-93-3                            | Argialbol1                                        | 69           |
| Wadena loam                                                                       | \$591A-21-1                           | Hapludoll                                         | 71           |
| Wadena loam                                                                       | S591A-21-2                            | Hapludoll                                         | 73           |
| Weller silt loam                                                                  | S69IA-68-1                            | Hapludalf                                         | 75<br>75     |
| Weller silt loam                                                                  | S69IA-59-1                            | Hapludalf                                         | 77           |
| Winterset silty clay loam                                                         | S611A-61-2                            | Argiaquoll                                        | 179*         |
| Winterset silty clay loam                                                         | S61IA-61-3                            | Argiaquoll                                        | 181*         |
| Zook silty clay loam                                                              | \$71T4_D2_1                           | Unelpanell                                        | 70           |
| area siriy cray roam                                                              | S711A-93-1                            | Haplaquoll                                        | 79           |

<sup>\*</sup>Page number refers to SSIR No. 3.

1/ County numbers (the number following "IA" in the Soil Survey No.) are as

| 1.  | Adair      | 45. | Howard     |
|-----|------------|-----|------------|
| 4.  | Appanoose  | 54. | Keokuk     |
| 6.  | Benton     | 61. | Madison    |
| 7.  | Black Hawk | 67. | Monona     |
| 9.  | Bremer     | 68. | Monroe     |
| 15. | Cass       | 71, | O'Brien    |
| 21. | Clay       | 77. | Po1k       |
| 22. | Clayton    | 83, | Shelby     |
| 36. | Fremont    | 86. | Tama       |
| 38. | Grundy     | 92. | Washington |
| 40. | Hamilton   | 93. | Wayne      |
| 43. | Harrison   | 94. | Webster    |

- 2/ This pedon lacks an argillic horizon and for this reason is considered to be a taxadjunct to the series.
- 3/ As described, this pedon has a thinner solum than defined for the series and the B2 and B3 horizons are less gleyed. This appears to be an intergrade to the Lamoni series.
- 4/ This pedon is considered to be a taxadjunct to the Ida series because it is in a coarse-silty family. Ida soils are fine-silty but border the coarsesilty family.
- 5/ This pedon is considered to be a taxadjunct to the Marcus series because it is in a fine, montmortillomitic family. Marcus soils are fine-silty but commonly occur near the border of the fine family.
- 6/ This pedon has a mollic epipedon a few inches thicker than allowed in Typic Haplaquolls, and is in a fine family. For these reasons it is considered to be a taxadjunct to the Marcus series. Marcus soils are fine-silty but commonly occur near the border of the fine family. Many Marcus pedons have epipedons that border the thickness limit for the Typic subgroup of Haplaquolls.
- This pedon is considered to be a variant of the Monona series because it is shallower to carbonates and has a thinner solum than allowed in the ranges of the series. It was sampled as part of a gully genesis study not as a pedon representative of the series.
- 8/ Carbonates are essentially leached from the top four horizons of this profile. Since this is a borderline profile it is classified with Typic Hapludolls.
- 9/ This pedon is considered to be a variant of the Monona series because it is shallower to free carbonates than the defined range for the series. It was sampled as part of a gully genesis study, not as a pedon representative of the series.
- 10/ Data indicate that this pedon is more acid in the B horizon than the defined range for the series and is leached more deeply. For these reasons it is considered to be an acid variant of the Monona series. The morphology and pH values indicate the influence of forest vegetation. This pedon was sampled as part of a gully genesis study, not as a pedon representative of the series.
- 11/ This pedon was sampled as part of a gully genesis study, not as a pedon representative of the series.
- 12/ This pedon has a thicker mollic epipedon them is allowed in the range of the Napier series and is considered as a taxadjunct to the Napier series. It was sampled as a part of a gully genesis study, not as a pedon representative of the series.
- 13/ Norg indicate that this medon is more acid and has a thicker mallic enimedon

than is allowed in the range of the series. For this reason, it is considered to be a variant of the Napier series. It was sampled as part of a gully genesis study, not as a pedon representative of the series. It appears to have been influenced by forest vegetation.

- 14/ This pedon is considered to be a taxadjunct to the Olmitz series because it is deeper to colors of 4 value and 3 chroma than allowed in the ranges of the series. It was sampled as part of a landscape study, not as a pedon representative of the series.
- 15/ This pedon lacks a mollic epipedon. The clay content and distribution are within the range of the series. The pH values are higher than typical and are outside the series ranges. This is a common problem in paleosols. See Ruha. Soil

- 16/ The Bonair series was never established. Pedons were selected to represent the fully timbered member of the Cresco-Lourdes biosequence.
- 17/ This pedon lacks an argillic horizon; it is severely eroded and for this reason lacks a mollic epipedon and is outside the range of the Clarinda series.
- 19/ This pedon is shallower to free carbonates than allowed in the ranges of the Shelby series. In addition it is less acid and lacks an argillic horizon and a mollic epipedon. It was sampled as part of a landscape study, not as a pedon representative of the series.
- 20/ This pedon lacks a mollic epipedon and is in a fine family. For these reasons it is a taxadjunct to the Shelby series.
- 21/ This pedon is considered to be a taxadjunct to the Sharpsburg series because it lacks an argillic horizon and is in a fine-silty family. It was sampled as part of a landscape study, not as a pedon representative of the series.
- 22/ This pedon is considered to be a taxadjunct to the Sharpsburg series because it lacks an argillic horizon and has common low chroma mottles higher in the B horizon than allowed in the series ranges. It was sampled as part of a landscape study, not as a pedon representative of the series.
- 23/ This pedon has colors of 3 value a few inches deeper than allowed in the series ranges. It was sampled as part of a landscape study, not as a pedon representative of the series.
- 24/ In addition to having grayer colors in the B horizon than allowed in the ranges of the series, this pedon lacks an argillic horizon and is in a fine-silty family.
- 25/ As described, this pedon has a solum a few inches thinner than that defined for the Sharpsburg series.
- 26/ This pedon lacks an argillic horizon and is in a fine family. For these reasons it is considered to be a taxadjunct to the Shelby series. It was sampled as part of a landscape study, not as a pedon representative of the series.
- 27/ This pedon is considered to be a taxadjunct to the Shelby series because it lacks an argillic horizon and the B horizon is lower in clay than the defined ranges for the series. It was sampled as part of a landscape study, not as a pedon representative of the series.
- 28/ This pedon is shallower to free carbonates than allowed in the range of the Shelby series.
- 29/ This pedon has slightly less increase in clay in the B horizon than is required for an argillic horizon
- 30/ This pedon has colors of 3 value extending a few inches deeper than is presently allowed in the ranges of the series.

1-3

## COLUMN HEADINGS FOR COMPUTER PRINTED DATA SHEETS

```
Column
          Depth in centimeters
   2
          Horizon
          Columns 3 through 16 display numbers which are percents of the total weight of particles 2 millimeters
          or less in size.
          Total sand (particles range from .05 to 2 millimeters)
  3
  Ē
          Total silt (particles range from .002 to .05 millimeter)
           Total clay (particles are smaller than .002 millimeter)
   6
          Total fine clay (particles are smaller than .0002 millimeter)
   7
          Very coarse sand (particles range from 1 to 2 millimeters)
  ġ.
          Coarse sand (particles range from 0.5 to ) millimeter)
          Medium sand (particles range from 0.25 to 0.5 millimeter)
  9
 10
          Fine sand (particles range from 0.1 to 0.25 millimeter)
          Very fine sand (particles range from .05 to 0.1 millimeter)
  11
          Coarse silt (particles range from .02 to .05 millimeter)
  12
          Fine silt (particles range from .002 to .02 millimeter; these limits also define the range of total
 13
          silt on the International Soil Science Society Scale.)
 зΨ
          Very fine silt (particles range from .002 to .005 millimeter)
 15
          Family texture sand (particles range from 0.1 to 2 millimeters)
 16
           International II (particles range from .02 to 0.2 millimeter; these limits define the range of the fine
           sand on the International Soil Science Society Scale.)
          Fine clay to clay (this is the ratio of fine clay to total clay expressed as percent.)
Noncarbonate clay (this is the percentage of total clay, column 5, minus the percentage of carbonate
  17
 18
           clay, column 36.)
 19
           Ratio of 15-bar water percentage to total clay percentage
 20
          Volume of material greater than 2 millimeters given as a percent of total (sample volume)
          Greater than 75 millimeter material given as a percent of total sample weight
Particle size range from 20 to 75 millimeters given as a weight percent of all material 75 millimeters
  21
 22
          or less in the sample
 23
          Particle size range from 5 to 20 millimeters given as a weight percent of all material 75 millimeters
           or less in the sample
 24
          Particle size range from 2 to 5 millimeters given as a weight percent of all material 75 millimeters
          or less in the sample
 25
          Particle size range less than .074 millimeter given as a weight percent of all material 75 millimeters
          or less
  26
          Particle size range from 2 to 20 millimeters given as a weight percent of all material 20 millimeters
          Rully density of soil described to 1/2 has given in grams, not subjector-
 27
```

```
28
        Bulk density of oven dry soil given in grams per cubic centimeter
29
        Coefficient of linear extensibility
        Water content of soil desorbed to 1/10-bar given as a percent of oven dry weight
30
        Water content of soil desorbed to 1/3-bar given as a percent of oven dry weight
31
        Water content of soil fragments desorbed to 15 bars given as a percent of oven dry weight
32
33
        Water retention difference given in centimeter per centimeter
34
        Column used for any water content measurement different from those given in columns 30 through 33
35
        Carbonate content of the material 2 millimeters or less given as a percent
36
        Carbonate content of the material .002 millimeter or less given as a percent
37
        pH of a 1:1 suspension of soil in distilled water
38
        pH of a 1:2 suspension of soil in .OI M CaClo
39
40
        Organic carbon given as a percent
        Nitrogen given as a percent
41
        Organic carbon to nitrogen ratio
42
        Extractable iron given as a percent
43
        Total phosphorus given as a percent
44
        Extractable calcium given in milliequivalents per 100 grams of soil
45
46
        Extractable magnesium given in milliequivalents per 100 grams of soil
        Extractable sodium given in milliequivalents per 100 grams of soil
47
        Extractable potassium given in milliequivalents per 100 grams of soil
48
        Sum of the extractable bases given in milliequivalents per 100 grams of soil
49
        Acidity - barium chloride with triethanolamine measurement - given in milliequivalents per 100 grams
        or soil
50
        Aluminum - potassium chloride extraction - given in milliequivalents per 100 grams of soil
51
        Cation exchange capacity by sum of the extractable bases plus the acidity given in milliequivalents
        per 100 grams of soil
52
        Cation exchange capacity as measured by ammonium acetate given in milliequivalents per 100 grams of
        soil
53
        Ratio of ammonium acetate cation exchange capacity to total clay
54
        Ratio of extractable calcium to extractable magnesium
55
        Calcium saturation of the ammonium acetate cation exchange capacity given as a percent
56
        Base saturation - sum of the extractable bases divided by the acidity plus the sum of the extractable
        bases - given as a percent
57
        Base saturation - sum of the extractable bases divided by the ammonium acetate cation exchange
        capacity - given as a percent
58
        Saturated paste (soil plus water) resistivity given in ohm-cm
```

### Continued

# COLUMN HEADINGS FOR COMPUTER PRINTED DATA SHEETS

| Column               |                                                                                                  |
|----------------------|--------------------------------------------------------------------------------------------------|
| 63<br>64<br>65<br>66 | Total soluble salt given in parts per million                                                    |
| 64                   | Gypsum given in percent                                                                          |
| 65                   | Electrical conductivity of the saturation extract given in mmhos per centimeter                  |
| 66                   | Calcium content of the saturation extract given in milliequivalents per liter                    |
| 67<br>68             | Magnesium content of the saturation extract given in milliequivalents per liter                  |
| 68                   | Sodium content of the saturation extract given in milliequivalents per liter                     |
| 69                   | Potassium content of the saturation extract given in milliequivalents per liter                  |
| 70                   | Carbonate $(CO_2)$ content of the saturation extract given in milliequivalents per liter         |
| 71                   | Bicarbonate (RCO3) content of the saturation extract given in milliequivalents per liter         |
| 72                   | Chloride content of the saturation extract given in milliequivalents per liter                   |
| 73<br><b>7</b> 4     | Sulfate $(\mathrm{SO_4})$ content of the saturation extract given in milliequivalents per liter  |
|                      | Nitrate (NO <sub>2</sub> ) content of the saturation extract given in milliequivalents per liter |
| 75                   | Liquid limit given as percent water - percentage basis is soil material less than 0.4 millimeter |
| 76                   | Plastic index                                                                                    |

| Soil No.    | Depth<br>in.                   | Horizon                              | <u> </u>             | P <u>I</u> 1/           | Page No. |
|-------------|--------------------------------|--------------------------------------|----------------------|-------------------------|----------|
| S56IA-1-2   | 6-12<br>23-30                  | Al2<br>IIB23                         | 28<br>33             | 9<br>12                 | 8        |
| S59IA-21-3  | 0-7<br>17-24<br>41-55          | Alp<br>B21<br>IIC                    | 60<br>55<br>48       | 30<br>31<br>28          | 78       |
| S59IA-21-4  | 0-7<br>21-30<br>47-60          | Alp<br>B22<br>IIC3                   | 54<br>49<br>37       | 21<br>26<br>19          | 124      |
| \$59TA-21-5 | 0-7<br>11-18<br>44-57          | Alp<br>Bl<br>IIC                     | 48<br>48<br>43       | <b>1</b> 8'<br>21<br>23 | 140      |
| S59IA-21+7  | 0-7<br>16-22<br>40-50          | Alp<br>B21<br>IIC1                   | 40<br>44<br>40       | 15<br>20<br>20          | 36       |
| S60IA-6-1   | 0-7<br>22-29<br>46-52          | Al<br>B21<br>C1                      | 46<br>51<br>41       | 26<br>26<br>20          | 108      |
| S60IA-9-1   | 0-5<br>25-33<br>54-62          | Alp<br>B22<br>Cl                     | 31<br>33<br>31       | 12<br>16<br>17          | 54       |
| \$601A-9-2  | 0-8<br>30-37<br>44-50          | Alp<br>IIB23<br>IIC1                 | 39<br>35<br>29       | 15<br>20<br>15          | 132      |
| s601A-9-4   | 0-9<br>23-32<br>43-58          | Alp<br>JJB22/JJB23<br>JJC1/C2        | 38<br>37<br>30       | 16<br>21<br>16          | 134      |
| S60IA-9-3   | 0-5<br>24-30<br>45-55          | Alpl<br>B22<br>B32                   | 29<br>33<br>32       | 11<br>19<br>18          | 56       |
| S60IA-9-5   | 0-9<br>19-26<br>3 <b>1-</b> 40 | A1<br>B21<br>IIB31/IIB32             | 32<br>44<br>32       | 17<br>23<br>17          | 58       |
| s601A+9+6   | 0-7<br>23-28<br>40-50          | Alp<br>B21<br>IIC1                   | 44<br>40<br>28       | 17<br>21<br>14          | 60 .     |
| s60IA-38-1  | 0-7<br>23-30<br>53-60          | Alp<br>B21<br>C2                     | 49<br>50<br>36       | 21<br>28<br>17          | 110      |
| s601A-38-2  | 0-6<br>16-21<br>37-44<br>48-58 | Alp<br>B2 <b>1</b><br>IIB32<br>IIC1  | 29<br>46<br>34<br>27 | 16<br>25<br>20<br>14    | 32       |
| S611A-36-1  | 2-10<br>24-54                  | c <b>1</b><br>c3/c4                  | 31<br>30             | 7<br>6                  | 46       |
| \$61IA-54-1 | 0-7<br>24-30<br>51-61          | Alp<br>B21<br>B32                    | 43<br>60<br>46       | 18<br>34<br>26          | 74       |
| S61IA-54-2  | 0-12<br>17-32<br>46-73         | Alp/Al2<br>B21/B22/B23<br>B32/B33/C1 | 43<br>52<br>44       | 19<br>26<br>23          | . 120    |
| S61IA-54-3  | 0-6<br>22-28<br>40-50          | Alp<br>B21<br>B32                    | 56<br>62<br>49       | 29<br>39<br>29          | 172      |
| \$611A-61-1 | 42-62<br>24-30<br>0-6          | Alp<br>B21<br>B31                    | 44<br>57<br>49       | 18<br>31<br>28          | 72       |
| s611A-61-2  | 0-7<br>24-28<br>56-75          | Alp<br>B22<br>C1/C2/C3               | 41<br>58<br>48       | 18<br>35<br>27          | 178      |

Llowa State Highway Commission data.

COUNTY - - - MONONA

U. S. DEPARTMENT OF AGRICULTURE --SOIL CONSERVATION SERVICE, MISC
NATIONAL SOIL SURVEY LABORATORY --LINCOLN, NEBRASKA

5-76-A1072 - - - - - 0701A-67-5 NOVEMBER 1975 SAMPLE NOS. 7011159-7011166 \_ \_ GENERAL METHODS- - -1A.1818.241.28 - - - - - - - RATIO SAND - - - - - 1 MEDS FNES VFNS CLAY CO3-CLAY SAND SILT CLAY VCOS CORS H .5-.25 .25-.05-CLAY 002 -002 -002 .05 -0002 •5 - 05 -02 .002 -02 TO PCT LM .38 000-23 40.5 8.2 9.0 023-48 C 1G 36.1 30.9 63.5 • 0 24-0 3.1 33-0 3.5 38 .37 26.0 62.4 56.0 72.1 72.7 14.5 TR TR TR 33.3 .0 38 074-100 C 3G1 37.2 -0 -0 3.9 4.3 .38 .O 41.7 .0 100-142 C-3G2 14.7 15.1 2.2 36 39 C 4G 27.7 25.9 - 0 -0 TR 2.0 626(A) 3.0 060-74 CZGIAI .36 (PARTICLE SIZE ANALYSIS, NM, 38, 381, 382)( BUL)
VOL. (-----) 4A1D
GT GT 75-20 20-5 5-2 LT 20-2 1/32 75 ...074 PCT BAR
...PCT - PCT 4--- PCT LT 75 --- ) LT20 G/CC BULK DENSITY -WATER CONTENT- - - -) CARRONATE ) (-481C 482 1/3- 15-481C 4C1 WRD 4A1H 4D1 OVEN COLE 1/10 1.7 1 T 1/2 H20 ÇAÇL PCT CM GICC PET PC.T PCT CM PC T 000-23 100 1 - 208 22.1 7.4 7.4 7.5 1.72 .109 37.3 ň 7.4 023-48 TR 1.30B 100 100 074-100 0 1.26 37.8 .123 100-142 0 ٥ 1.25 7.6 7.4 7.3 100 .140 40.6 26.5 25.0 . 17 7\_6 048-60 100 PHOS (- -EXTRACTABLE BASES 584A- -) ACTY
6S1A 6N2E 602D 6P2A 6Q2A 6H1A
TOTL CA MG NA K SUM BACL DEPTH (ORGANIC MATTER IRON AL 6GID EXCH) RATIO RATIO (BASE-SAT 1 - .. 5F 681A C/N 6C2A EXT 6H1A SASA 5464 801 8D3 503 6ALA BACL NHAC CA SAT NHAC FYTA MHAC DRGN NITG TO ACTY CARB FXTR TEA FXT ACTY -MEQ / 100 CLAY PCT PÇT PCT PCT (-CM PC1 34.26 44.0 40.4 .69 000-23 2.070 .210 38.7 023-48 40.2 . 96 .113 32.4E 6.0E 1.6 8.1E 7.6E .64 1.6 1.5 1.7 1.7 074-100 .59 -075 1.3 33.4E 7.3E 10.0E 7.8E 31.5E 34.7E 40.6 36.0 -64 .59 142-175 - 4× 1.3 36.6€ 45.8 .63 1.3 060-74 BAIA 6NIB 601B 6PIA 6QIA 6IIA 6JIA 6KIA 6LIA 6MIA 4FI 4F2
EC CA NG NA K. CO3 HCQ3 CL SD4 NO3 LQID PLST DEPTH (SATURATED PASTE) NA SALT 805 1016 6F LA 8C1B REST. PH H20 ESP -- SAR LMIT INDX MMHOS/ SOLU ---- MEQ / LITER ------PCT PCT CM C.M PCT PPM 49 000-23 023-48 044-74 52 55 1200 7.3 81.8 250 3.1 . 9 .3 074-100 ANE 100-142 048-60 DUSKY BLACK HC1.

023~36 442

036-48 481

044 - 70

<sup>(0)</sup> ORGANIC CARBON IS 13 KG/M SQ TO A DEPTH OF 1 M (6A).
(E) METHOUS SNAC FOR CA AND 60AC FOR MG.
(F) BY IOMA STATE HMY COMM, AMES, IA.
(G) BY SOIL TESTING LAB, IOMA STATE UNIV, AMES, IA. 681 006-23

Pedon classification: Vertic Fluvaquent; very fine, montmorillonitic (calcareous), mesic.

Series classification: Vertic Fluvaquent; fine, montmorillonitic, mesic1/,

Soil: Albaton silty clay

Soil no.: S70-Iowa-67-5 (LSL Nos. 70L1159 - 70L1164).

Location: Monona County, Iowa; about 5 miles west of Onawa, Iowa, 400 feet north and 40 feet east of the

southwest corner of sec. 3, T. 83 N., R. 46 W.

Vegetation and

Alfalfa; cropland. Parent material: Recent, calcareous, clayey, alluvial sediments.

Physiography: Nearly level bottomland in Missouri River bottom. Site about 14 miles east and 1 mile north of

Missouri River and about 12 miles west of uplands.

Relief: Nearly level. 81ope: Less than 0.5 percent. Drainage: Poorly drained.

Erosion: None.

Ground water: None at time of sampling, area seldom flooded, area was subject to flooding prior to construction

of large dams on the Missouri River.

Permeability: Very slow.

Described by: J. R. Culver, C. S. Fisher, J. R. Worster, and F. F. Riecken; October 28, 1970.

(Colors are for moist conditions unless otherwise stated)

Ap 70L1159 0 to 23 cm (0 to 9 inches). Very dark grayish brown (10YR to 2.5Y 3/2) silty clay, grayish brown (10YR 2.5Y 5/2) dry; moderate very fine angular and subangular blocky structure; firm; few spots of black to very dark gray decayed organic matter; slightly effervescent; mildly alkaline; clear smooth boundary.

Clg 70L1160 23 to 48 cm (9 to 19 inches). Dark grayish brown (2.5Y 4/2) silty clay, faces of peds very dark grayish brown (2.5Y 3/2), few fine faint olive brown (2.5Y 4/4) mottles; strong fine and very fine blocky structure, appears to be recent deposition as structure is approaching rock structure; firm; slightly effervescent; mildly alkaline; clear smooth boundary.

C2g 70L1161 48 to 74 cm (19 to 29 inches). Mottled gray (5Y 5/1) and dark yellowish brown (10YR 4/4) silty clay, few very pale brown (10YR 7/3) coatings on horizontal plates; massive to weak very fine blocky and subangular blocky structure; firm; few thin bands or strata of dark yellowish brown (10YR 4/4); few snail shells and fragments of snail shells; slightly effervescent; moderately alkaline; gradual smooth boundary.

C3g 70L1162 70L1163 74 to 142 cm (29 to 56 inches). Grayish brown (2.5Y 5/2) silty clay, common fine and medium distinct gray (5Y 5/1) and common fine and medium prominent yellowish brown (10YR 5/4) mottles; strong

boundary,

C4g 70L1164 142 to 175 cm (56 to 70 inches). Grayish brown (5Y 5/2) silty clay, few fine distinct gray (5Y 5/1) mottles; massive; firm; dark grayish brown (5Y 4/2) shiny surfaces of slickensides, few very pale brown (10YR 7/3) coatings on slickenside surfaces that are strongly effervescent; few fine dark reddish brown stains along old root channels; slightly effervescent; mildly alkaline.

1/The data indicate that this type location is very fine rather than fine because its clay content averages more than 60 percent in the 10 to 40 inch control section.

| EPTH         | HORI        | ZON            | (                     |                    |              |              |             |                  | E S17F       |              |             | T 28H-       | 341.         | 3414.      | 341R -                                 | =                    |               |                 | PATIO       |
|--------------|-------------|----------------|-----------------------|--------------------|--------------|--------------|-------------|------------------|--------------|--------------|-------------|--------------|--------------|------------|----------------------------------------|----------------------|---------------|-----------------|-------------|
|              |             |                |                       |                    |              | FINE         | (           |                  | SAND -       |              | )           | (            | SILT-        | }          | FAML                                   | INTR.                | FINE          | NON-            | 801         |
|              |             |                | SAND<br>2~            |                    | CLAY         | CLAY<br>LT   | VC 05       | CORS<br>1-       | MEDS         | FNES         | VENS        | COZI         | FNSI         | VFSI       | TEXT                                   | 11                   | CLAY          | C03-            |             |
|              |             |                | .05                   |                    | .002         | .0002        |             | .5               | .25          | 10           | -05         | .02          | -002         | - 002      | 21                                     | - 02                 | CLAY          | CL AY           | BAR<br>TO   |
| H            |             |                | (                     |                    |              |              |             | - <i></i> -      | - PCT        | LT 2M        | 4           |              |              |            |                                        |                      | PCI_          |                 | CLAY        |
| -020         | AP          |                | 2.6A                  | 77.7               | 19.7         |              | .3          | 1.0              | .6           | .4           | ,3          |              | 42.3         |            | 2.3                                    | 35.8.                |               | ~~~~            |             |
| -030         |             |                | 2.8A                  | 74.1               | 23.1         |              | -4          | 1.2              | -6           | .3           | .3          | 30.8         | 43.3         |            |                                        | 31.2                 |               |                 | .39         |
| -041<br>-043 | A22         |                |                       | 71.3<br>68.2       |              |              | . • 5       | 1.7              | -,6          | •3           | -2          | . 29.3       | 42.0         |            | ــــــــــــــــــــــــــــــــــــــ | 29.7                 |               |                 | 39          |
| -053         | 821         |                |                       | 46.0               |              |              | 1.1         | 1.7              | .3           | .3           |             | 27.2<br>17.5 |              |            |                                        | 27.6<br>17.8         |               |                 | .39         |
| ~069         | 822         | TG             | .8A                   | 42.1               | 57.1         |              | -1          | . 2              | .2           | -1           | -2          | 15.7         | 26.4         |            |                                        | 15.9                 |               |                 | .44         |
| -084         | 823         |                | 1.2A                  | 46.6               |              |              | • I         | .3               | -2           | - 3          | • 3         | 17.5         | 29.1         |            | • 2                                    | 18.0                 |               |                 | .45         |
| +107<br>-142 | 831<br>832  |                |                       | 54.2<br>61.1       |              |              | - 1<br>- 1  | •2<br>•2         | •2<br>•1     | • 2<br>• 2   | . 2<br>. 3  | 20.0<br>23.1 | 34.2         |            |                                        | 20.2                 |               |                 | -47<br>-51  |
| -165         | č           | ., .           | .8                    |                    | 34.4         |              | TR          | .2               | :i           | . 2          | .3          | 24.4         | 40.4         |            |                                        | 24.8                 |               |                 | .50         |
|              |             |                |                       |                    |              |              |             |                  |              |              |             |              |              |            |                                        |                      | <b>-</b>      |                 |             |
| TH           | (PART)      | CLE S          | IZE ANA               |                    |              | 38, 381      |             |                  |              | 1TY )        | <br>(       |              | R CON        | ITENT-     |                                        | AVATL                |               | (PH             |             |
|              | VOL.        | (              |                       | - WEI              | GHT -        |              | :           | 4A1D             | 4 A I H      | 4D1          | 481C        | 4B1C         | 482          | 4Ç1        |                                        | P_E                  | /             | BCIA            | 8C1E        |
|              | GT<br>2     | G T<br>75      | 75-20                 | 20-5               | 5-2          | LT<br>-074   | 20-2<br>PCT | 1/3-<br>BAR      | OV EN<br>DRY | CULE         | 1/10<br>BAR | 1/3-<br>BAR  | 15-<br>BAR   | WRD<br>CM/ |                                        | LBS/A                | CRE           | 1/1<br>H20      | 1/2<br>CACL |
|              | PCT         |                | 1                     | PCT L              | T 75 -       | ,            | LT20        |                  | 67cc         |              | PCT         | PCT          | PCT          | CH         |                                        |                      |               | .024            | LALL        |
| 020          | 0           | 0              |                       |                    |              | 98           | 0           | 1.53             | 1.43         | -019         | 30.8        | 29.1         | 8.7          | . 28       | 0.6C                                   | 9.5                  |               | 6.1             | 5.6         |
| -030         |             | ō              | ŏ                     | ō                  | ō            | 97           | 0           | 1.37             | 1.45         | .019         |             | 27.4         | 9-1          |            | 0.60                                   | 8.5                  |               | 5.2             | 4.6         |
| -041         |             | 0              | 0                     | 0                  | 0            | 97           |             | 1.39             | 1.47         | -019         | 28.8        | 26.6         | 9,9          | .23        | Q-6C                                   | فو ـ                 |               | 5.2             | 4.4         |
| -043<br>-053 |             | 0              | 0                     | 0                  | 0            | 96<br>99     |             | 1.40B<br>1.26    | 1.86         | .139         | 39.7        | 37.8         | 10.8         | -20        | 1.6C                                   | 9.2                  |               | 5.1<br>5.1      | 4.4<br>4.6  |
| -069         |             | ŏ              | ŏ                     | ō                  | ŏ            | 99           |             | 1.25             | 1.96         | . 162        | 41.8        | 40.4         | 25.2         | .19        | 1.5C                                   | 11.5                 |               | 5.1             | 4.8         |
| -084         |             | 0              | 0                     | 0                  | 0            | 99           | 0           | 1.308            |              |              |             |              | 23-7         |            |                                        | 37.5                 |               | 5.2             | 5.1         |
| -107<br>-142 |             | 0              | 0                     | 0                  | 0            | 99<br>99     |             | 1.37             | 1.93         | .121         | 34.8        | 33.8         | 21.2<br>19.2 | .17        | 1.8C<br>0.9C                           | 65.5                 |               | 5.6             | 5-4<br>5-8  |
| -165         |             | ŏ              | Õ                     | ő                  | ő            | 99           |             | 1.38             | 1.67         | -066         | 35.7        |              | 17.2         | -22        | 1.00                                   | 6 <u>5.5</u><br>26.5 |               | _ <u>6.1</u>    | 5.8         |
|              |             |                |                       |                    |              |              |             |                  |              |              |             |              |              |            | _                                      | ٠.                   |               |                 |             |
|              |             |                |                       | <del></del> -      |              |              |             |                  |              |              |             |              |              |            |                                        |                      |               |                 |             |
| H (1         |             | 6B1A           | TER )                 | 6C2A               | PHOS<br>6514 | (EXT         |             |                  |              | 441          | SHIA        | AL<br>6GID   | 5A3A         | 546A       | RATIO<br>8D1.                          | 8D3 .                |               | (BASE           |             |
|              | ORGN        | NITG           |                       | EXT                | TOTL         | CA           | MG          | NA               | K            | SUM          | BACL        | KCL          | EXTB         | NHAC       | NHAC                                   | ÇA                   | SAT           | EXTB            | NHAC        |
| 4            | CARB<br>PCT | PCT            |                       | FE<br>PCT          | PCT (        |              |             |                  |              | / 100        |             | EXT          | ACTY         |            | CLAY                                   | TO                   | PCT           | PCT             | PCT         |
| •            | PL1         | PÇI            |                       | rui                | ru, (        |              |             |                  | MEW          |              |             |              |              | ,          | CLAY                                   |                      | ,             |                 |             |
| 020          | 1.710       | .15            | 4 11                  |                    |              | 12.7         | 1.9         | 0.2              |              | 15.0         | 6.5         |              | 21.5         | 17.8       | 0.90                                   | 6.7                  | 71            | .20.            | 84          |
| 030          | 0.97        | .09            | 2 11                  |                    |              | 7.3          | 2.2         | 0.3              | 0.2          | 10.0         | 9.4         |              | 19.4         | 15.9       | 0.69                                   | 3.3                  | 46            | 52              | 63          |
|              | 0.60        | - 07           |                       |                    |              | 6.9          | 2.8<br>3.6  | 0.4              |              | 10.4         | 9.4         | 1.1          | 20.0<br>21.7 | 16.6       | 0-65                                   | 2.1                  | 42            | <u>.52</u>      | 57<br>67    |
|              | 0.88        | .06            |                       |                    |              | 7.7<br>17.5  | 8.7         | 1.6              | 0.8          |              | 13.8        |              |              | 37.5       | 0.71                                   | 2-0                  | . 47          | <b>67</b> .     | _76         |
| -069         | 0.73        |                |                       |                    |              | 21.6         | 10.3        | 2.2              | 0.9          | 35.0         | 12.4        | 0.8          | 47.4         | 41.0       | 0-72                                   | 2-1                  | 53            | 74              | 85          |
|              | 0.57        |                |                       |                    |              | 21.7         | 10.3        | 2.4              |              | 35.2         | 9.9         | 0.3          | 45-1         | 38.8       | 0.74                                   | 2.1.<br>2.0          | - <u>56</u> - | <u>78</u>       | - 91<br>95  |
|              | 0.32        |                |                       |                    |              | 19.5<br>17.9 | 9.9         | 2.2              | 0.6          | 32.2<br>29.5 | 6.7<br>5.1  |              |              | 33.9       | 0.76<br>0.79                           | 2.0                  | 6D            | 83<br>85        | 99          |
|              | 0.08        |                |                       |                    |              | 16.3         | 7.9         | 1.8              | 0.6          | 26.6         | 4.5         |              | 31.1         |            | 0.78                                   | 2.1                  | 61            | 86              | 99          |
|              |             |                | COMPRISI<br>STI MATEI |                    |              |              |             |                  |              | - M _        | ,           |              |              |            |                                        |                      |               |                 |             |
| MIC          | RO-PE       | NETRA          | TION RE               | SISTAN             | CE - A       | ROD O.       | .6 CM       | DIA (S           | SLOWL        | Y PUSH       | D INT       | D BULK       | DENSI        | TY CLO     | O, EQU                                 | ILIBRA               | TEO AT        | 1/10-           | BAR,        |
| M A C        | JESTAN      | NEIKA<br>Le de | 0.6 CM                | NA IZLI<br>DA IZLI | A POC        | KET PE       | O CM        | DIA (5<br>Leter. | SEUME        | ARE E        | 38CE 1      | KG L AN      | U NUI        | ESTIMA     | U, EQU                                 | TE 18KA              | FEW AT        | 1/10-<br>COMPRS | BAR         |

Pedon classification: Mollic Albaqualf: fine, montmorillonitic, mesic.

Series classification: (Same as pedon).

Soil: Appanoose silt loam.

Soil no.: S69-lowa-4-1 (LSL Nos. 69L971 - 69L980).

Location: Appanoose County, Iowa; 50 feet east and 1,008 feet north of the southeast corner of the SWA SWA

Sec. 35, T. 68 N., R. 19 W.

Vegetation and land use: Orchardgrass and bluegrass meadow; cropland.

Parent material: Partly from deoxidized and leached and partly from oxidized and leached Wisconsin loess. Physiography: Stable, nearly level upland divide between the drainage of two small streams--divide less than 1/4 mile in width.

Relief: Plane to slightly concave.

Slope: Less than 1 percent. Drainage: Poorly drained.

Ground water: None within 65 inches.

Erosion: Slight.

Permeability: Very slow.

Described by: J. R. Culver, J. D. Highland, T. E. Fenton; November 3, 1969.

(Colors are for moist conditions unless otherwise stated)

Ap 691971 0 to 20 cm (0 to 8 inches). Very dark gray (10YR 3/1) silt loam, very dark grayish brown (10YR 3/2) kneaded, grayish brown (10YR 5/2) dry; cloddy breaking to moderate fine and medium platy structure; friable; common fine roots; slightly acid; clear smooth boundary.

A21 691972 20 to 30 cm (8 to 12 inches). Dark gray (10YR 4/1) and very dark gray (10YR 3/1) silt loam, grayish brown (10YR 4/2) kneaded, light gray (10YR 7/2) dry; few fine distinct dark yellowish brown (10YR 4/4) mottles and few fine faint light clive brown (2.5Y 5/4) mottles; moderate medium platy structure; friable; thin discontinuous light gray (10YR 7/1 dry) silt coatings on plates; few fine soft dark brown (7.5YR 4/4) accumulations of oxides; few fine roots; strongly acid; clear smooth boundary.

A22 691973 30 to 41 cm (12 to 16 inches). Grayish brown (10YR 5/2) heavy silt loam, few very dark gray (10YR 3/1) coats on faces of peds, few fine distinct yellowish brown (10YR 5/6) mottles, light gray (10YR 7/1 dry) silt coats on faces of peds; weak coarse prismatic structure parting to weak fine subangular blocky; friable; few fine soft dark reddish brown (5YR 2/2) accumulations of oxides; few fine roots; few small wormcasts; strongly acid; clear smooth boundary.

B1 69L974 41 to 43 cm (16 to 17 inches). Grayish brown (2.5Y 5/2) silty clay loam; continuous white (10YR 8/1) dry silt coatings on faces of peds; few to common fine faint yellowish brown (10YR 5/6) mottles and few fine distinct strong brown (7.5YR 5/6) mottles; moderate fine subangular and angular blocky structure; firm; thin discontinuous dark gray (10YR 4/1) clay films; few fine black (10YR 2/1) Fe-Mn coatings on faces of peds; few fine soft reddish brown (5YR 2/2) accumulations of oxides; strongly acid; abrupt smooth boundary.

B21tg 691975 43 to 53 cm (17 to 21 inches). Dark gray (10YR 4/1) with streaks of very dark gray (10YR 3/1) silty clay; common fine distinct yellowish brown (10YR 5/6) mottles and few fine faint light olive brown (2.5Y 5/4) mottles; moderate fine and very fine angular and subangular blocky structure; very firm; continuous thick clay films on faces of peds; few fine soft dark reddish brown (5YR 3/2) accumulations of oxides; strongly acid; gradual smooth boundary.

B22tg 69L976 53 to 69 cm (21 to 27 inches). Dark grayish brown (2.5Y 4/2) silty clay; dark gray (10YR 4/1) coatings; common fine prominent yellowish brown (10YR 5/6) mottles; moderate fine angular and subangular blocky structure; very firm; moderately thick continuous clay films on faces of peds; few fine soft dark reddish brown (5YR 3/2) accumulations of oxides; strongly acid; gradual smooth boundary.

B23tg 691.977 69 to 84 cm (27 to 33 inches). Grayish brown (2.5Y 5/2) silty clay; few dark gray (10YR 4/1) coatings on faces of peds, common fine faint light clive brown (2.5Y 5/4) mottles, common medium prominent yellowish brown (10YR 5/6) and strong brown (7.5YR 5/6) mottles; moderate medium and fine subangular blocky structure; firm; discontinuous dark gray (10YR 4/1) clay films; few fine soft dark reddish brown (5YR 3/2) oxide and Fe-Mn accumulations; medium acid; gradual smooth boundary.

B31tg 691978 84 to 107 cm (33 to 42 inches). Light brownish gray (2.57 6/2) light silty clay; few fine distinct yellowish brown (10YR 5/6) mottles; common medium prominent strong brown (7.5YR 5/6) mottles; weak coarse prismatic structure parting to weak fine to medium subangular blocky structure; firm; deoxidized and leached weathering zone; thin discontinuous dark gray (10YR 4/1) clay films; few fine soft dark reddish brown (5YR 3/2) and brown (7.5YR 4/4) accumulations of oxides; few light gray (10YR 7/1) silt coats on prism faces; common soft Fe-Mn accumulations; very few roots; medium acid; gradual smooth boundary.

B32tg 69L979 107 to 142 cm (42 to 56 inches). Olive gray (5Y 5/2) heavy silty clay loam, common fine to medium prominent strong brown (7.5YR 5/6) mottles, few medium prominent yellowish red (5YR 4/6) mottles; weak medium to coarse angular and subangular blocky structure; firm; deoxidized and leached weathering zone; thin discontinuous very dark gray (10YR 3/1) clay films on faces of peds and dark gray (10YR 4/1) clay-filled root channels; few fine soft dark reddish brown (5YR 3/2) accumulations of oxides; common Fe-Mn stains and concretions; slightly acid; gradual smooth boundary.

C 691980 142 to 165 cm (56 to 67 inches). Light gray (2.5Y 7/2) light silty clay loam, many medium prominent strong brown (7.5YR 5/6) mottles; weak coarse prismatic structure to massive; deoxidized and leached weathering zone; few grayish brown (2.5Y 5/2) colloid stains on ped faces; few fine soft dark reddish brown (5YR 3/2) accumulations of oxides; numerous very fine voids; slightly acid.

U. S. DEPARIMENT DE AGRICULTURE SOIL CONSERVATION SERVICE MRTSC SOIL SURVEY INVESTIGATIONS UNIT SOIL CLASSIFICATION-MOLLIC ALBAQUALE FINE, MONTMORILLONITIC, MESIC SERIES - - - - - - APPANOOSE LI NCOLN. NEBRASKA SOIL NO - - - - - S6910WA-4-3 COUNTY - - - APPANOOSE GENERAL METHODS- - -1 A2 A . 1 B1 B . 1 B2 . 1 B SAMPLE NOS. 691981-691989 - PARTICLE SIZE ANALYSIS, LT 2MM, 3A1, 3A1A, 3A1B - - - - - - - - SAND - - - - - 1 (- - - SILT - + - - ) FAML INTR FINE COS CORS MEDS FNES VFNS COSI FNSI VFSI TEXT II CLAY FINE ( DEPTH HORIZON (------ - JRATID NON-801 15-SAND SILT CLAY vcos 05-.5-.25 5- .25-25 .10 PCT LT 2MM 2-•05 \*005 2-1-•5 .10- .05 -02 .005-SAND .02 TO CLAY .002 +0002 .002 CLAY 2-.1 T o - - -) PCT CM 000-020 2.94 75.6 29.1 27.1 52 55 21.5 11.2 2.6 4.2A 6.0A 69.6 26.2 32.7 020-036 A2 14.3 .3 39.4 25.8 28.7 036-038 81 2.0 2.5 21.9 5.1 1.2 22.3 13.5 - 8 . 3 . 42 38.9 44.5 54.0 60.7 45.1 38.8 29.7 59.6 .1 TR •3 13.1 038-051 BZITG 1.5A •5 822TG B23TG .6A 051-066 . 2 -1 16.1 .45 .47 .0 066-084 45.5 -1 .2 21.1 32.9 21.3 084-104 AS. -50 104~150 **B32TG** 1.04 66.8 37.2 - 1 26.5 40.3 26.9 24.0 -52 -48 (PARTICLE SIZE ANALYSIS, MM, 38, 381, 382)( BULL VOL. (- - - - - - MEIGHT - - - - - ) 4A1D GT GT 75-20 20-5 5-2 LT 20-2 1/3-2 75 .074 PCT BAR )(- - -481C AVAIL, DEPTH BULK DENSITY ~WATER CONTENT- - - -) 4A1H 4D1 OVEN COLE 48 LC 1/3-BAR 4B2 15-BAR 8C1A 8C1E 1/1 1/2 4CI URD 1/10 LBS/ACRE DRY BAR CH/ H20 CACL 1- - - PCT LT 75 - + ) LT20 G/CC CM PCT PCT G/CC PCT 000-020 1.41 18.0 9.2 0.90 6 . 6. 5 . 1 6.2 4.4 Ô ō ō ō 1.51 020-036 0 0 96 .023 31.0 28.5 10.2 1.90 7.5 036-038 0 94 99 4.0 4.8 038-051 Ō ō 1.76 .124 42.0 40.3 1.00 2.5 3.Ω 0 0 1.24 .18 4.8 4.5 051-066 0 0 0 100 0 1.30B 24.6 5.2 1.86 .102 30.7 066-084 0 0 0 1.39 32.8 1.30 20.0 5.0 084-104 104-150 79 99 1.46 1.90 .092 31.3 30.2 1.8C n a 0 0 0 -16 67.0 5.5 ŏ 24.0 6.4 30.4 150-173 0 ٥ .050 33.0 13.8 CA SF DÉPTH (DRGANIC MATTER ) IRON PHOS (- -EXTRACTABLE BASES 584A- -) ACTY AL (CAT EXCH) RATIO RATIO (BASE SAT) 5A6A NHAC 6Bla NITG C/N 6SIA 6N2E 602D ALHO 6G10 5A3A 8D1 SC3. 6AIA ORGN 6C2A 6P2A -6Q2A 8D3 NHAC TOTL KCL EXT EXT CA NA K SUM BACL EXTR CA SAL NHAC CARB ŢΩ -MEQ / 100 PCT CM PCT PCT PCT PCT (-G-CLAY PCT PCT 24.4 20.3 24.7 48.6 46.4 39.1 000-020 1.480 020-036 0.68 .159 .14.2 16.5 7.9 10.0 92 1.0 0.2 0.3 0.84 7.9 68 .083 В 0.3 0.3 9.8 0.9 1.5 2.2 1.3 1.4 2.0 1.5 1.4 1.5 1.2 2.3 16.7 0.64 3.3 52 63 0.6 1.7 2.0 2.1 20.6 40.5 39.3 32.7 .085 8.8 3.6 0.4 13.4 036-038 0.64 11.3 0.63 0.68 0.72 0.72 038-051 1.00 64 71 79 2.2 77 17.3 051-066 0.84 066-084 0.34 084-104 0.18 13.4 8.4 7.2 20.6 9.5 0.9 33.0 2.2 - 092 52 84 18.9 8.8 2.1 0.6 0.7 30.4 27.9 37.6 33.8 30.8 0.80 2.1 61 81 99 104-150 0.18 150-173 0.11 100 - - ) ATTERBERG NA SE SALT 8D5 (- - - - - - - - SATURATION EXTRACT BAI- -(SATURATED PASTE) NΑ GYP DEPTH 611A 6J1A 6K1A 6L1A 6M1A CO3 HCO3 CL SO4 NO3 6FIA 6PIA 6QIA 4F1 4F2. 5DZ 8E1 8C18 REST PН H20 ESP TOTL FC CA MG INDX SOLU OHM-PCT - - - MEQ / LITER - - -ĐĖT DC T PCT CM I -CM 34E. 000-020 12 020-036 036-038 56E 31 038-051 051-066 63E 32 066-084 084-104 104-150 120 0.32 1600 5.4 57.8 66E 32 150-173 PLACEMENT (S691A-4-3) MONTMORILLONITIC. CLAY MINERALOGY (7A2C) 038-51

KK2 MI1. KK2 MI1. KK2 MI2 MT4 MT3

150-173

150-173 MF3 KKZ MIZ VMI.

COMMENTS—— CLAYS WELL-ORDERED. MONTMORILLONITE IN B21TG (38-51CM) HAS INTERLAYER COMPONENT.

RELATIVE AMOUNTS—— (X-RAY) 5 = DOMINANT 4 = ABUNDANT 3 = MQDERATE 2 = SMALL 1 = IRAGE. (DTA) AS PERGENT.

MINERAL CODE—— MT = MONTMORILLONITE MI = MICA KK = KAOLINITE VM = VERMICULITE

(A) FE/MN NODULES COMPRISE MORE THAN 75 PCT OF THE SAND (0-150 CM)

(B) BULK DENSITY ESTIMATED FOR HORIZONS FROM 36-38 AND 51-66 C4.

(C) MICRO-PENETRATION RESISTANCE — A ROD 0.6 CM DIA IS SLOWLY PUSHED INTO BULK DENSITY CLOD. EQUILIBRATED AT 1/10-BAR.

A DISTANCE OF 0.6 CM USING A POCKET PENETROMETER. UNITS ARE FORCE (KG) AND NOT ESTIMATES OF UNCONFINED COMPRESSIVE STREWSTM.

STRENGTH.

(D) ORGANIC CARBON IS 10 KG PER SQ M TO A DEPTH OF 1 METER (NETHOD 6A).

(E) ATTERBERG LIMITS DETERMINED BY SOIL MECHANICS LAB. SCS. LINCOLN, NEBR EXCEPTEOR MORIZONS FROM 20-36. 38-51. AND 104105 CM WHICH MERE DETERMINED BY THE IOWA HWY DEPT, AMES, IOWA.

(F) IOWA STATE UNIVERSITY DATA.

Pedon classification: Mollic Albaqualf: fine, montmorillonitic, mesic.

Series classification: (Same as pedon)

Soil: Appanoose silt loam.

Soil no.: S-69-lowa-4-3 (LSL Nos. 69L981 - 69L989).

Location: Appanoose County, Iowa, 460 feet east and 300 feet south of the northwest corner of the NWk SW sec. 25, T. 68 N., R. 19 W.

Vegetation and land use: Orchardgrass; rotation pasture.

Parent material: Partly from deoxidized and leached and partly from oxidized and leached Wisconsin loess.

Physiography: Nearly level stable narrow divide in the loess-covered Kansan and Nebraskan till plain.

Divide has a general north-south axis.

Slope: Less than I percent.

Drainage: Poorly drained.

Permeability: Very slow.

Erosion: None ·

Ground water: None -

Relief: Plane.

Described by: J. D. Highland, J. R. Culver and T. E. Fenton; November 4, 1969.

(Colors are for moist conditions unless otherwise stated)

Ap 69L981 0 to 20 cm (0 to 8 inches). Very dark gray (10YR 3/1) silt loam, very dark grayish brown (10YR 3/2) kneaded, grayish brown (10YR 5/2) dry; weak coarse platy structure parting to weak thin platy; friable; few fine soft dark reddish brown (5YR 3/2) oxides; common fine roots; slightly acid; clear smooth boundary.

A2 69L982 20 to 36 cm (8 to 14 inches). Grayish brown (10YR 5/2) silt loam, few fine faint dark yellowish brown (10YR 4/4) mottles, light gray (10YR 7/1 and 7/2) dry; moderate medium platy structure parting to weak thin platy structure; friable; thin discontinuous light gray (10YR 7/1) dry silt coatings on plates; common fine dark reddish brown (5YR 3/2) oxides; very strongly acid; abrupt smooth boundary.

B1 69L983 36 to 38 cm (14 to 15 inches). Grayish brown (2.5Y 5/2) silty clay loam; common fine faint light olive brown (2.5Y 5/4) mottles; moderate fine subangular blocky structure; firm; continuous white (10YR 8/1) dry silt coatings on ped surfaces; strongly acid; abrupt smooth boundary.

B21tg 691.984 38 to 51 cm (15 to 20 inches). Dark gray (10YR 4/1) with streaks of very dark gray (10YR 3/1) and dark grayish brown (2.5Y 4/2) silty clay; common fine distinct yellowish brown (10YR 5/6) and light olive brown (2.5Y 5/4) mottles; strong very fine angular and subangular blocky structure; very firm, very hard; common fine hard dark reddish brown (5YR 3/2) oxides; continuous clay films; strongly acid; gradual smooth boundary.

B22tg 69L985 51 to 66 cm (20 to 26 inches). Dark grayish brown (2.5Y 4/2) silty clay; some dark gray (10YR 4/1) on faces of peds; many olive brown (2.5Y 4/4) and yellowish brown (10YR 5/6) mottles: strong fine and very fine angular and subangular blocky structure; very firm, very hard, thick continuous clay films; few fine hard dark reddish brown (5YR 3/2) oxides; strongly acid; gradual smooth boundary.

B23tg 691986 66 to 84 cm (26 to 33 inches). Light brownish gray (2.5Y 6/2) silty clay; many fine prominent vellowish brown (10YR 5/6) and strong brown (7.5YR 5/6) mottles; moderate coarse subangular blocky structure; Firm, very hard, discontinuous dark gray (10YR 4/1) clay films; few fine soft dark reddish brown (5YR 3/2) and brown (7.5YR 4/4) oxides; medium acid; gradual smooth boundary.

B31tg 69L987 84 to 104 cm (33 to 41 inches). Light brownish gray (2.5Y 6/2) heavy silty clay loam, many fine prominent yellowish brown (10YR 5/6) and strong brown (7.5YR 5/6) mottles; weak coarse subangular blocky structure; firm, very hard, few dark gray (10YR 4/1) clay-filled root channels and streaks on peds; few fine hard dark reddish brown (5YR 3/2) and brown (7.5YR 4/4) oxides; medium acid; gradual smooth boundary.

B32tg 69L988 104 to 150 cm (41 to 59 inches). Colors as above; slight decrease in clay but still silty clay loam; weak coarse subangular blocky structure; firm, hard when dry; increase in oxides but colors as above; slightly acid; gradual smooth boundary.

C 691989 150 to 173 cm (59 to 68 inches). Light olive gray (5Y 6/2) light silty clay loam; common medium prominent strong brown (7.5YR 5/6) and reddish yellow (7.5YR 6/8) mottles; deoxidized and leached weathering zone; massive, vertical cleavage; few fine soft dark reddish brown (5YK3/2) oxides; slightly acid.

Remarks: Lower A2 and B1 were saturated above the silty clay B21tg.

| SOIL CLASSIFI                 | CATION-TYPIC<br>FINE,<br>  | , MONTMORIL          | LONITIC      | MES 1          | c             |               |                |             |              |                | \$0<br>\$0    | IL CON            | SERVAT       | NT DF<br>ION SE<br>VESTIG | RVICE               | MRTSC          |
|-------------------------------|----------------------------|----------------------|--------------|----------------|---------------|---------------|----------------|-------------|--------------|----------------|---------------|-------------------|--------------|---------------------------|---------------------|----------------|
| SOIL NO                       | S71IT                      | WA-4-2               | COUNTY       |                | APPAN         | 00 SE         |                |             |              |                | LI            | NCOLN,            | NEBRA        | SKA                       |                     |                |
|                               |                            |                      |              | _              |               |               | _              |             | 1135         | _              | 001           | OBER 19           | nzlı         |                           |                     |                |
| GENERAL METHO                 | <u>1A,18</u>               | 31B,ZA1,20           |              |                | SAMPL         | E NOS.        | /1611          | 28-711      | .1133        |                | 001           | OBER 19           | 114          |                           |                     |                |
| DEPTH HORI                    | 70H (                      |                      |              |                | PARTICL       | E C17E        | ANALY          | 515.        | T 2MM.       | 341.           | 3414.         | 3A1B -            |              |                           |                     | PATIO          |
| DEFIN HUKI                    |                            |                      | FINE         | (              |               | SAND -        |                | )           | (            | SILT           | )             | FAHL              | INTR         | FINE                      |                     | 8D1            |
|                               | SAND<br>2-                 | SILT CLA             |              | VCOS           | CORS<br>1~    | MEOS          | FNES<br>-25-   | VFNS        | COS1         | FNSI           | VF \$1        | SAND              | 11           | CLAY                      | CO3-                | 15-<br>BAR     |
|                               | .05                        | .002 .00             |              |                | .5            | •25           | •10            | •05         | .02          | .002           | .002          | 21                | +02          | CLAY                      | - GERT              | TO.            |
| CM                            | (                          |                      |              |                |               | - PCT         | LT_2M          | <u> </u>    | <del></del>  |                |               |                   | 1            | PCT                       | PCT                 | CLAY           |
| 000-18 AP                     | 4.74                       | 55.4 39.             | 9 21.9       | 1              | 5             | .7            | _ 1,4          | 2.0         | 15.2         | 40.2           | 12.1          | 2-7               | 18.0         | _ 55                      |                     | .43            |
| 018-30 A12                    | 4.ZA                       | 54.9 40.             |              | ì              | . 5           | •6            | 1.1            | 1.9         | 12.9         | 42.0           | 15-5          | 2.3               | 15.4         | 53                        |                     | -43            |
| 030-46 BEA<br>046-69 B21      | 5.5A<br>5.3A               | 55.8 38.<br>58.3 36. |              | 1              | 1.1           | <u>.9</u> _   | - <u>1.5</u>   | 2.1         | 15.5         | 43.2           | 11.5          | 3.3               | 15.7         | <u>52</u><br>52           |                     | .44            |
| 069-89 B22                    | 3.7A                       | 56.2 40.             | 1 22.5       | 3              | . ,6          | 5             | 8.             | 1,5         | 1 <u>5.5</u> | 40.7           | 10.4          | 2.2               | 17.5         | 56                        |                     |                |
| 089-109 B23                   |                            | 54.0 40.<br>58.2 35. |              | .5             | .8<br>.6      | •5<br>•4      | 1.2            | 2.4<br>3.4  | 13.9         | 40.1<br>39.3   | 9.1           | 3.0<br>2.5        | 17.1<br>23.2 | 63<br>68                  |                     | -46            |
| 135-165 832                   |                            |                      |              | . 4            | .7            | •6            | 1.9            | 3.9         | 17.7         | 39.0           | 10.2          | 3.6               | 22.8         | 66                        |                     | .47            |
|                               |                            |                      |              |                |               |               | <del></del> := |             |              |                |               |                   |              |                           |                     |                |
| DEPTH (PARTI                  | LE SIZE ANA                | LYS <u>IS, MM</u> ,  | 38, 3B1      | <u>, 382</u>   | EL BUL        | K DENS        | 1TY )          | (           | -WATE        | R COP          | ITENT         | <del>-</del> + -) | _ AVAI       | Έ <i>/</i>                | ( <u>PI</u><br>8C1A | 8C1E           |
| GT _                          | GT 75-20                   | 20+5 5-2             | LT           | 20-2           | 1/3-          | OVEN          | COLE           | 1/10        | 1/3-         | 15-            | WRD           |                   | L/BS/        | ACRE                      | 1/1                 | 1/2            |
| 2                             | 75                         |                      | +074         | PCT            | BAR           | DRY           |                | BAR         | BAR          | BAR            | CM/           |                   |              |                           | HZD                 | CACL           |
| CM PCT                        | PCT (                      | PCT LT 75            | <del></del>  | L126           | 6/60          | G/CC_         |                | PCT         | PCT.         | PCT            | CM            |                   |              |                           |                     |                |
| 000-18 0                      | 0 0                        | . 0 .                | 97           |                | 1.37          | 1.61          | -055           | 29.9        | 28.7         | 17.3           |               | 3.10              |              |                           | 5.0                 | 4-7            |
| 018-30 0<br>030-46 0          | 0 0                        | 0 0                  |              | 0              | 1-42<br>1-40B | 1.66          | .054           | 27.8        | 27.3         | 17.6           | -14           | 4.3¢              | 37           |                           | 4.8<br>4.9          | 4. 4<br>4. 3   |
| 046-69 0                      | <del>o</del> š             | 0 0                  | 96           | Ó              | 1.35          | 1.53          | .043           | 28.1        | 27.0         | 16.4           | -14           | 5.3Ç              | 28           |                           | 4.8                 | 4.3            |
| 069-89 0                      | - 0 O                      | 0 0                  |              | 0_             | 1.40B         | 1.71          | 043            | 28.7        | 27.6         | 17.8           | .13           | 4.5C              | 32<br>51     |                           | 4.9<br>5.1          | - 4.3<br>4.3   |
| 089-109 0<br>109-135 0        | 0 0                        | 0 0                  |              | ŏ              | 1-408         | 1.71          |                |             |              | 16.9           |               |                   | 53<br>51     |                           | 5.l                 | 4.0            |
| " <del>135-16</del> 5 0       |                            | ó C                  | 95           | Ö              | 1.49          | 1.78          | -061           | 26.5        | 25.7         | 16.7           | .13           | 2.60              | 51           |                           | 5.4                 | 4.7            |
| DEPTH (ORGANI                 |                            | IRON PHOS            | (Ex          | TOACT          | ARLE RA       | 565 SR        |                | ACTY        | AL           | LCAT           | EXCH)         | RATIO             | RATIO        | CA                        |                     | SAT)           |
| 6ALA                          | 681A C/N                   | 6C2A 651             | A 6N2E       | 602D           | 6PZA          | 6Q 2 A        |                | 6H1A        | 6G 1D        | 5A3A           | 5 A6 A        | 8D1               | 803          | 5F                        | 5C 3                | 5C1            |
| ORGN                          | NITG                       | FE TOT               | Ļ CA         | MG             | NA_           | <u>K</u>      | SUM<br>EXTB    | BACL<br>TEA | EXT          | EXTB<br>ACTY   | NHAC          | NHAC              | TO           | SAT<br>NHAC               | -EXTB               | NHAC           |
| CM PCT                        | PCT                        |                      | (            | . <del>-</del> |               | <u> - MEQ</u> | / 100          |             |              |                | }             | CLAY              | MG           | PCT                       | PCT.                | PCT            |
| 000-18 1.910                  | .175 11                    | 1,3                  | 19.8         | 5.5            |               | 4             | 26.1           | 13.5        | -1           | 39.6           | 33.9          | .85               | 3.6          | 58                        | 66                  | 77             |
| 018-30 1.76                   | .157 11                    | 1.2                  | 17.5         | 5.4            | -4            | .4            | 23.7           | 14.7        | . 2          | 38.4           | 32.3          | • 79              | 3.2          | 54                        | 62                  | 73             |
| 030-46 1.35<br>046-69 1.10    | -125<br>-099 11            | 1.4                  | 15.2<br>13.4 | 5-1<br>4-8     |               | - 3           | 21.0           | 14.2        | - 5          | 35.2           | -30.3<br>28.2 | -78<br>-77        | 3.0<br>2.8   | - <del>50</del> .         | <u>60</u>           | 69<br>67       |
| 069-89 .90                    | -                          | 1.4                  | 14-0         | 5.9            | - 5           | .4            | 20.8           | 13.9        | - 8          | 34.7           | 29.6          | .74               | 2.4          | 47                        | 60                  | _ 70           |
| 089-109 .73<br>109-135 .52    |                            | 1.3<br>1.1           | 14.9<br>13.2 | 6.6            | .6<br>.5      | -4            | 22.5           | 13.0        | .7           | 35, 5<br>30, 1 | 29.9          | •74<br>•73        | 2.3          | 50<br>50                  | 63<br>67            | - 15<br>77     |
| 135-165 - 44                  | _                          | 1.2                  | 14.2         | 6.7            |               |               | 21.8           | 7.9         | •1           |                | 26.0          | •73               | 2.1          | 55                        | 73                  | 84             |
|                               |                            |                      |              |                |               |               |                |             |              |                |               | ===:              |              |                           |                     |                |
|                               | ATED PASTE)                | NA NA                | SALT<br>805  | GYP<br>6F1A    | 41 Ā B        |               |                |             |              |                |               | 6K1A              | ēLIĀ         | )<br>681A                 | ATTERI<br>4F1       | SERG 1/<br>4F2 |
| BEI<br>REST                   | BC18 8A<br>PH H20          | ESP SAR              | TOTL         | ar tw          | EC            | CA            | MĞ             | NA          | K            | CD3            | HC 03         | CL                | 504          | NO3                       | LQID                | PLST           |
| DHM-                          |                            |                      | SOLV         |                | MWHU3/        |               | _              |             | WE A         | ,              |               | _                 |              |                           |                     | IŃĐX           |
| CM CM                         | PCT                        | PCT                  | РРМ          | <u> </u>       | <u>CM (</u>   |               |                |             | - Tich       |                | `             |                   |              |                           |                     |                |
| 000-18                        |                            |                      |              |                |               |               |                |             | _            |                |               |                   |              |                           | 44                  | 17             |
| 018~30<br>030 <del>~4</del> 6 |                            |                      |              |                |               |               |                |             |              |                |               |                   |              |                           |                     |                |
| 046-69                        |                            |                      |              |                |               |               |                |             |              |                |               |                   |              |                           | ftjf                | 50             |
| 069-89<br>089-109 3400        | 417 58.2                   | -                    |              |                | .17           |               |                |             |              |                |               |                   |              |                           | 44                  | 22             |
| 109-135                       |                            |                      |              |                |               |               |                |             |              |                |               |                   |              |                           |                     |                |
| 135-165                       |                            |                      |              |                |               |               |                |             |              |                |               |                   |              |                           |                     |                |
|                               | DULES GT 50                | PCT.                 |              |                |               |               |                |             |              |                |               |                   |              |                           |                     |                |
| (C) MICRO-PE                  | NETRATION RE               | ESISTANCE -          | A ROD (      | .6 CM          | DIA IS        | SLOWL         | Y PUSH         | ED IN       | TO BULI      | DENS           | ITY CLO       | D, ÉQ             | JILIBR       | ATED AT                   | 1710                | BAR,           |
|                               | CE OF 0.6 C                | M USING A I          | OCKET PE     | ENETRO         | METER.        | UNITS         | ARE I          | ORCE        | (KG) A       | ND NOT         | <u>ES</u> TIM | ITES OF           | E NWC DI     | YF I NE D                 | COMPR               | ESS IVE        |
| A DI STA                      | <u></u>                    |                      |              |                |               |               |                |             |              |                |               |                   |              |                           |                     |                |
| A DISTAN                      | CARBON IS 18 UNIVERSITY DA | B KG/M SQ 1          |              |                |               | )-            |                |             |              |                |               |                   |              |                           |                     |                |

Pedon classification: Typic Haplaquoll; fine, montmorillonitic, mesic. Saries .classification: (Same as pedon).

Soil: Chequest silty clay loam.

Soil no.: S71-Iowa-4-2 (LSL Nos. 71L1128 - 35).

Location: Appanoose County, Iowa; 100 feet west and 50 feet north of the southeast corner of the NE's NE's sec. 13, T. 68 N., R. 17 W.

Vegetation and land use: Soybeans, cropland.

Parent material: Acid, moderately fine textured alluvium that contains about 5 to 15 percent sand.

Physiography: On the nearly level bottom land of the Chariton River.

Relief: Flat.

Slope: Less than 1 percent.

Drainage: Poorly drained.

Erosion: None.

Ground water: None to 6 feet (seasonal rainfall below normal).

Permeability: Moderately slow.

Described by: J. D. Highland and L. D. Lockridge; October 1971.

(Colors are for moist soil unless otherwise stated)

Ap 7111128 0 to 18 cm (0 to 7 inches). Very dark gray (10YR 3/1) silty clay loam, gray (10YR 5/1) dry, kneaded very dark grayish brown (10YR 3/2); weak fine granular structure; firm; common roots; many pores; slightly acid (pH 6.3); abrupt smooth boundary.

A12 7111129 18 to 30 cm (7 to 12 inches). Very dark gray (10YR 3/1) silty clay loam, dark gray (10YR 4/1) dry, kneaded very dark gray (10YR 3/1); moderate very fine subangular blocky structure; firm; many roots; many pores; few very fine dark reddish brown soft oxides and a few fine reddish brown hard oxides; slightly acid (pH 6.1); clear wavy boundary.

B&A 71L1130 30 to 46 cm (12 to 18 inches). Dark gray (10YR 4/1) silty clay loam, gray (10YR 6/1) dry, kneaded very dark gray (10YR 3/1); common fine distinct dark brown (7.5YR 3/2) mottles; moderate fine subangular blocky structure; firm; common fine roots; common fine pores; nearly continuous light gray (10YR 7/1 dry) silt coatings on peds; medium acid (pH 5.8); gradual wavy boundary.

B21g 71L1131 46 to 69 cm (18 to 27 inches). Dark gray (10YR 4/1) heavy silty clay loam, gray (10YR 6/1) dry; many medium distinct dark brown and few fine brown (7.5YR 4/2) mottles; moderate fine and medium subangular blocky structure; firm; common gray (10YR 6/1 dry) silt coatings on peds; few thin discontinuous black (10YR 2/1) clay films; few fine reddish brown soft oxides; common fine roots; common fine pores; few old channels 1 to 2 mm in diameter filled with light gray (10YR 7/1) silty material; medium acid (pH 5.6); gradual smooth boundary.

B22g 71Lll32 69 to 89 cm (27 to 35 inches). Dark gray (10YR 4/1) heavy silty clay loam, very dark gray (10YR 3/1) coatings on peds; many fine distinct dark yellowish brown (10YR 4/4) and common fine distinct dark brown (7.5YR 3/2) and brown (7.5YR 4/2) mottles; moderate fine prismatic parting to moderate fine and medium subangular blocky structure; firm; thin discontinuous very dark gray (10YR 3/1) clay films; common fine black soft oxides; common discontinuous gray (10YR 6/1 dry) silt coatings on peds; common fine roots; strongly acid (pH 5.3); gradual smooth boundary.

B23g 71L1133 89 to 109 cm (35 to 43 inches). Dark gray (10YR 4/1) medium silty clay loam, very dark gray (10YR 3/1) coatings on peds; many medium distinct dark yellowish brown (10YR 4/4) mottles; moderate fine prismatic parting to moderate fine angular and subangular blocky structure; firm; common fine black and few fine reddish brown soft oxides; thick black discontinuous clay coats on walls of root channels and pores and on prisms; few thin discontinuous gray (10YR 6/1) silt coatings dominantly on prism faces; common fine roots; strongly acid (pH'5.3); gradual smooth boundary.

B31g 71L1134 109 to 135 cm (43 to 53 inches). Dark gray (10YR 4/1) medium silty clay loam, very dark gray (10YR 3/1) coatings on peds; common fine distinct brown (7.5YR 4/4) and dark brown brown (7.5YR 4/2) mottles; weak medium prismatic parting to weak fine angular and subangular blocky structure; firm; thick black discontinuous clay coats on walls of root channels and in pores and on prisms; few thin discontinuous gray (10YR 6/1 dry) silt coats on some prisms; few fine reddish brown soft oxides; medium acid (pH 5.8); gradual smooth boundary.

B32g 71L1135 135 to 165 cm (53 to 65 inches). Dark gray (10YR 4/1) medium silty clay loam; common fine distinct reddish brown (5YR 4/4) mottles; weak medium prismatic parting to weak medium subangular blocky structure: firm:

thick black discontinuous clay coats on walls of root channels and in pores and on prisms; few thin discontinuous gray (10YR 6/1 dry) silt coatings on prisms; medium acid; pH 5.8.

| SOLF C                                          | ASSIFICATIO                |               | IC OCHE              |                |               | r                |                  |                  |              |             |                  |              |              |                    |               | ENT OF             |             |            |
|-------------------------------------------------|----------------------------|---------------|----------------------|----------------|---------------|------------------|------------------|------------------|--------------|-------------|------------------|--------------|--------------|--------------------|---------------|--------------------|-------------|------------|
| SERIES                                          |                            |               |                      | , 4175         |               |                  |                  |                  |              |             |                  |              | \$0          | IL SU              | RVEY I        | TION SI<br>NVESTIC |             |            |
| SOIL N                                          |                            | - S71I        | OWA-4-1              | 1              | COUNTY        |                  | APPA             | NODSE            |              |             |                  |              | LI           | NCOLN:             | , NEBR        | ASK A              |             |            |
|                                                 |                            |               |                      |                |               |                  |                  |                  | 211.1        |             | 1146             |              |              | TOBER 1            | orth.         |                    |             |            |
| GENERAL                                         | METHODS                    | IM 9 I        | DIDICAL              | 1125           |               |                  | SARP             | LE NOS.          | /11.         | 136- r 11.  | 1147             |              |              | TOBAR I            | 714           |                    |             | -          |
| DEPTH                                           | HORI ZON                   |               |                      |                |               |                  | PARTICI          | E \$175          |              | /STS. 1     | T 288            | 241.         | 3414.        | 2 A 1 D .          |               |                    |             | DATIO      |
|                                                 |                            |               |                      |                | FINE          | (                |                  | SAND -           |              | 1           | (                | -SILT-       | 1            | FAML               | INTR          | FINE               | NON-        | 8D1        |
|                                                 |                            | SAND<br>2-    | \$1L7<br>-05-        | CLAY           | CLAY          | VCOS<br>2-       | CORS<br>1-       | MEDS             | FNES<br>-25- | VFNS        | .051             | FN\$1        |              | TEXT<br>SANO       |               | ÇLAY<br>TQ         |             | 15-<br>BAR |
|                                                 |                            | .05           | .002                 | -002           | .0002         | 1                | .5               | .25              | .10          | .05         | •02              | • 002        | - 002        | 21                 | +02           | CLAY               | CLAY        | TO         |
| CM_                                             |                            | (             |                      |                |               |                  |                  | PC1              | LT 21        | 1M          |                  |              |              |                    |               | ) PCT              | PCT         | CLAY       |
| 000-20                                          | AP                         |               | 68.3                 |                | 13.9          | -1               | 5                |                  | 1.4          | 5.7         | 30.2             |              | 8.6          | 2.5                | 36.9          | 59                 |             | 46         |
| 020-36<br>036-51                                | A21<br>A22                 | 7.4A          | 68.4<br>67.9         | 24.9           |               | .2               | 1.2              | .7<br>.8         | 1.1          | 3.5         | 24.6<br>24.0     |              | 9.9<br>10.7  | 3.2<br>3.7_        | 28.8<br>28.5  | 57<br>55           |             | .45        |
| 051-64                                          | AZ3                        | 8.0A          | 67.9                 | 24.1           | 13.1          | -6               | 1.4              | +6               | 1.2          | 4.2         | 25.3             | 42.6         | 9.9          | 3.8                | 30.3          | 54                 |             | .43        |
| 064-81<br>081-94                                | 81G<br>821 TG              | 8+5A<br>10-4A |                      | 25.0<br>25.5   | 14.7<br>15.5  | <u></u> 4        | 1.2              | 5                | 1-8          | 8.2         | 27.6             | 38.9<br>33.6 | 6.6          | 3,3<br>2,2         | 33.8<br>40.3  | 59<br>61           |             | •43<br>•45 |
| 094-109<br>109-139                              |                            | 12.74         |                      | 27.8           | 18.6          | -1               | 2                |                  | 2.9          | 9.3         | 26.2             | 33-3         | 5.9          | 3.4                | 38.1          | 67                 |             | -47        |
| 135-160                                         | 832G                       | 8.7A<br>5.0A  | 61.0                 | 34.0           | 20.4          | .1<br>.1         | .4               | .3               | 1.8          | 3.1         | 26.7             | 34.7<br>40.7 | 10-4         | 2.3                | 34.6<br>24.1  | 67<br>60           |             | -47<br>-46 |
| 160-191                                         | B33G                       | 4.5A          | 61.3                 | 34.2           | 20.3          | •1               | .6               | . 5              | .9           | 2.4         | 22.8             | 38.5         | 10.2         | 2.1                | 25.7          | 59                 |             | -47        |
|                                                 |                            |               |                      |                |               |                  |                  |                  |              |             |                  |              |              |                    |               |                    |             |            |
| DEPTH                                           | VOL. (- +                  |               |                      |                |               |                  |                  |                  |              | 481C        | -WATE            | ER CO        | 4C1          | 1                  | AVA:          | <b>4</b> 7         | ECLA        |            |
|                                                 | GT GT                      |               | 20-5                 |                | LT            | 20-2             | 1/3-             | OVEN             |              | 1/10        | 1/3-             | 15-          | MRD          |                    |               | ACRE               | 1/1         | 1/2        |
| ξM                                              | 2 75<br>PCT PCT            | (             | - PCT 1              | 1 75 -         | .074          | PCT              | BAR              | DRY<br>G/CC      |              | BAR<br>PCT  | BAR              | 8AR<br>PCT   | CH/          |                    | .,            |                    | H20         | CACL       |
|                                                 |                            |               |                      |                |               |                  |                  |                  |              |             |                  |              |              |                    |               |                    |             |            |
| 020-20<br>020-36                                | 0 0                        | 0             | <u>0</u>             | 0:             | 96            | -0               | 1.51             | 1.63             | -026         |             | 22.9             | 10.9         | -18          | 4.6C               | 93            | <u> </u>           | 5.6<br>5.1  | 5.3        |
| 036-51                                          | 0 0                        | 0             | 0                    | 0              | 95            | Ō                | 1.508            |                  |              |             |                  | 10.7         |              |                    | 62            | 2                  | 4.5         | 3.9        |
| 051-64<br>064-81                                | 0 0                        | 0             | 0                    | 0              | 95<br>95      | 0                | 1.49<br>1.50B    | 1.55             | .013         | 25.2        | 24.1             | 10.3         | .21          | 2.8Ç               | 149<br>146    |                    | 4.3         | 3.7<br>3.7 |
| 081-94                                          | 0 0                        | 0             | 0                    | Ö              | 96 "          | 0                | 1.46             | 1.59             |              | 26.3        | 24.3             | 11.5         | .19          | 3.1C               | . 51          | 1                  | 4.4         | 3.7        |
| 094~109<br>109-135                              |                            |               | 0                    | 0              | <del>94</del> |                  | 1.50B            | 1.63             | .028         | 24.5        | 23.6             | 13.0         | .16          | 3.8C               | <del>61</del> |                    | 4.4         |            |
| 135-160<br>160-191                              |                            | 0             | 0                    | 0              | 97            | 0                | 1.53             | 1.67             |              | 23.5        | 23.2             | 15.7         | .11          | 6 • 2C             | 84            | ·                  | 4.8         | 3.9        |
| 100-171                                         | . 0 0                      | U             | U                    | v              | 71            | ·                | 1.50             | 1.66             | .034         | 24.7        | 23.1             | 15.9         | -12          | 4.8¢               | 91            |                    | 5.2         | 4.4        |
| NEDTH (                                         | ORGANIC MAT                | TED \         | IDON                 | OMOS.          | (EX           | TO ACT           | BI E BA          | SEC SA           | AA1          | AC TV       | AL               | /CAT         | EXCH)        | PATIO              | PATTO         | CA                 | /8456       | SAT)       |
| VET III 1                                       | GALA 681                   | CIN           | 6C2A                 | 651A           | 6N2E          | 602D             | 6PZA             |                  |              | 6H1A        | 661D             | SABA         | 5 A6A        | 8D1                | 8D3           | 5F                 | 503         | 5Cl        |
|                                                 | ORGN NITO                  | <u> </u>      | EXT<br>FE            | TOTL           | CA            | MG               | NA NA            | K                | SUM<br>EXTB  | BACL<br>TEA | EXT              | ACTY         | JAHN.        | NH AC              | TO            | SAT<br>NHAC        | ACTY        | NHAC       |
| CM                                              | PCT PCT                    |               | PCT                  | PCT            | <u></u>       | <u></u>          | <u></u>          | MEQ              |              |             |                  |              | <u> j</u>    |                    | MG            | PCT                | PCT         | PCT        |
| 000-20                                          | 1.23D .116                 | 11            | 1.0                  |                | 15.1          | 2.7              | .1               | .3               | 18.2         | 6.0         |                  | 24.2         | 20.9         | -89                | 5.6           | 72                 | 75          | 87         |
| 020-36                                          | -46 .066                   | i '           | 1.0                  |                | 11.8          | 2.7              | -2               | . 2              | 14.9         | 7.2         | -,1              | 22.1         | 18.7         | .75                | 4.4           | 63                 | 67          | 80         |
| 036-51<br>051-64                                | .32 .041<br>.26 .038       |               | 1.1                  |                | 5.2           | 1.8              | 2                |                  | 7.4          | 11.8        | 2.8              | 20.6         | 16.8         | -68<br>-66         | 2.9           | 39                 | 43<br>39    | 92<br>46   |
| 064-81<br>081-94                                | +20 -033                   |               | - 8                  |                | 4.9<br>5.5    | 2.0              | • 2              | :2               | 7.3          | 11.9        | 4.0              | 20.9         | 15.9         | . 64               | . 2.5         | 31<br>32           | 38          | 46<br>50   |
| 094-109                                         | .16 .036                   |               | .9<br>1.0            |                | 6.6           | 3.4              | .2               | .3               | 10.6         | 12.6        | 4.1              | 23.2         | 19.9         | .67<br>.72         | 2.1           | 33                 | 46          | 53         |
| 109-135                                         |                            |               | 1.0                  |                | 7.7           | 4.0<br>5.0       | .7               | • 3              | 12.5         | 12.3        | 3.6              | 24.8<br>28.4 | 21.1         | .71<br>.69         | 2.0           | 36<br>42           | 50<br>56    | 59<br>68   |
| 135-160<br>160-191                              |                            |               | 1.1                  |                | 11.9          | 5.5              | 1.0              | - :4             | 18.8         | 9.7         | .3               | 20.5         | 24.2         | .71                | 2.2           | 49                 | 66          | 78-        |
|                                                 |                            |               |                      |                |               |                  |                  |                  |              |             | <u> </u>         |              |              |                    |               |                    |             |            |
| DEPTH                                           | (SATURATED                 |               | NA                   | NA             |               | GYP (            |                  | <del></del>      |              | SATURA      | TION E           | XTRAC        |              |                    |               |                    |             |            |
|                                                 | BEL BCLB<br>REST PH        | 8A<br>H20     | 5D2<br>ESP           | 5E<br>SAR      | 805<br>TOTL   | 6F1A             | BA1A<br>EC       | 6N1B<br>ÇA       | MG<br>9018   | NA<br>NA    |                  | CO3          | 6JLA<br>HÇO3 |                    | SO4           | MO3                | 4F1<br>LQID |            |
|                                                 | OHM-                       |               |                      |                | SOLU          |                  | IMHOS/           |                  |              |             | wen 4            |              |              |                    |               |                    | LMIT        | INDX       |
| CM                                              | CM                         | PCT           | PCT                  |                | Frn           | PCT              |                  |                  |              |             |                  | LITE         |              |                    |               |                    |             |            |
| 000-20                                          | ·····                      | - r · · ·     |                      |                | /             |                  |                  |                  |              |             |                  |              |              |                    |               |                    | 38E         | 14         |
|                                                 | _                          |               |                      |                |               |                  |                  |                  |              |             |                  |              |              |                    |               | <u> </u>           |             |            |
| 051-64                                          |                            |               |                      |                |               |                  |                  |                  |              |             |                  |              |              |                    |               |                    |             |            |
| 064-81                                          |                            |               |                      |                |               |                  |                  |                  |              |             |                  |              |              |                    |               |                    |             |            |
| 081-94<br>094-109                               | 4600 412                   | 46-4          |                      |                |               |                  | .22              |                  |              |             |                  |              |              |                    |               |                    | 36E         | 14         |
| 109-135                                         |                            |               |                      |                |               |                  |                  |                  |              |             |                  |              |              |                    |               |                    | 40E         | 18         |
| 135-160<br>160-191                              |                            |               |                      |                |               |                  |                  | <del>-</del>     |              |             |                  |              |              |                    |               |                    |             |            |
|                                                 |                            | 145           |                      | DI CET         | MENT (S       | 7114-4           |                  | MONTHO           | oti i de     | 1710        |                  |              |              |                    |               |                    |             |            |
| 000-20                                          | NÉRALOGY (7<br>MT3 KKZ     |               | oz 1                 | COMMEN         | ITS - C       | RYSTAL           | LINITY           | OF SM            | ECTITE       | DECRE       | ASES T           | DWARD        | SURFAC       | E. GE              | NERALI        | Y WELL             |             |            |
| 036-51                                          | MT4 KK3                    | M12           |                      |                |               | RYSTAL           | .IZED.           | KAOLI<br>JNTS (E | NITE A       | ND MIC      | A CONT           | TENT A       | SOUT SA      | ME WIT             | TH DEPT       | TH - \$M           | IALL TO     |            |
| 081-94<br>135-160                               | MT5 KK3                    | MIZ           | 0 <u>Z1</u>          |                |               | YVENA!           | E AMUL           | , 11 3 LE        | LU-          |             |                  |              |              |                    |               |                    |             |            |
| 160-191<br>MINERAL                              | MT5 KK3<br>CODE* MT-       | MIZ C         | 071<br>2111057       | TE V           | -KADI T       | NITE             | MT_FT            | A 07-            | DIAPT        |             |                  |              |              |                    |               |                    |             |            |
| PINCKAL                                         | E ABUNDANÇE                | * 5-00        | DMINANT              | 4-A            | BUNDANT       | 3-MC             | DERATE           | 2-SM             | ALL I        | -TRACE      |                  |              |              |                    |               |                    |             |            |
| KELPITA                                         | -MN NODULES                | GT 50         | PCT, 1               | 5-25 (         | PCT 81-       | 135 CM           |                  |                  |              |             |                  |              |              |                    |               |                    |             |            |
| (A) FE                                          |                            |               |                      |                |               |                  |                  |                  | M B1151      |             |                  |              | -            |                    |               |                    |             | BAD.       |
| (A) FE<br>(B) ES<br>(C) MI                      | CRO-PENETRA                | TION R        | ESISTAN              | ICE - #        | ROD O         | .6 CM            | DIA IS           | S SLOWL          | T PUSH       | ED INT      | O BULK           | C DENS       | IT CLU       | ID, EQU            | TEIBEN        | ATED AT            | 1/10-       | UAN        |
| (A) FE<br>(B) ES<br>(C) MI                      | CRO-PENETRA<br>DISTANCE OF | TION RE       | ESISTAN<br>USING     | CE - /<br>A PD | KET PE        | .6 CM<br>Netrop  | DIA 15<br>LETER. | UNITS            | ARE F        | ORCE (      | O BULK<br>KG) AN | ND NOT       | ESTIMA       | ID, EQU<br>ITES OF | UNCO          | IFINED             | COMPRE      | SS IVE     |
| (A) FE<br>(B) ES<br>(C) MI<br>A<br>ST<br>(D) OR | CRO-PENETRA                | 0.6 CI        | <u>using</u><br>Kg/m | SQ TO          | KET PE        | NETRON<br>H OF 1 | ETER.            | UNITS            | ARE F        | ORCE (      | O BULK           | ND NOT       | ESTIMA       | TES OF             | UNCO          | IFINED             | COMPRE      | SSIVE      |

Pedon classification: Mollic Ochraqualf; fine-silty, mixed, mesic.

Series classification: (Same as pedon).

Soil: Coppock silt loam.

Soil no.: S71-Iowa-4-1, (LSL Nos. 71L1136 - 71L1145).

Location: Appanoose County, Iowa, 600 feet east and 910 feet north of the southwest corner of sec. 25, T. 68 N.,

R. 17 W.

Vegetation and land use: ,Grain sorghum; cropland.

Parent material: Silty alluvium.

Physiography: On a natural levee of an abandoned stream channel on the Chariton bottom land.

Relief: Plane to slightly convex.

Slope: Less than 1 percent.

Drainage: Somewhat poorly to poorly drained.

Erosion: None.

Ground water: None to 7 feet (seasonal rainfall below normal).

Permeability: Moderate.

Described by: J. D. Highland and L. D. Lockridge; October 1971.

(Colors are for moist soil unless otherwise stated)

Ap 711136 0 to 20 cm (0 to 8 inches). Very dark grayish brown (10YR 3/2) silt loam, grayish brown (10YR 5/2) dry; weak fine granular structure; friable; neutral; abrupt smooth boundary.

A21 71L1137 20 to 36 cm (8 to 14 inches). Dark grayish brown (10YR 4/2) silt loam with some very dark grayish

weak thin platy structure parting to weak fine granular; friable; few fine dark brown soft oxides; neutral; clear smooth boundary.

A22 71L1138 36 to 51 cm (14 to 20 inches). Dark grayish brown (10YR 4/2) silt loam, some very dark grayish brown (10YR 3/2) coatings on peds; light brownish gray (10YR 6/2) dry, dark grayish brown (10YR 4/2) kneaded; weak thin platy parting to weak fine granular structure; friable; few dark reddish brown soft oxides; thin discontinuous light gray (10YR 7/2 dry) silt and fine sand coatings on plates; slightly acid; clear smooth boundary.

A23 71L1139 51 to 64 cm (20 to 25 inches). Grayish brown (10YR 5/2) heavy silt loam, dark grayish brown (10YR 4/2) coatings on peds; weak medium platy parting to weak fine subangular blocky structure; friable; few fine dark reddish brown soft oxides; thin discontinuous light gray (10YR 7/2 dry) silt and fine sand on blocky peds; medium acid; clear wavy boundary.

Blg 71L1140 64 to 81 cm (25 to 32 inches). Grayish brown (10YR 5/2) light silty clay loam, patchy dark grayish brown (10YR 4/2) coatings, light gray (10YR 7/2) dry; few fine distinct brown (7.5YR 4/4) mottles; moderate medium subangular blocky structure; common fine dark reddish brown soft oxides; common discontinuous light gray (10YR 7/2 dry) silt and fine sand coatings on peds; strongly acid; gradual smooth boundary.

B21gg 71L1141 81 to 94 cm (32 to 37 inches). Grayish brown (10YR 5/2) and light brownish gray (10YR 6/2) light silty clay loam; common fine distinct brown (7.5YR 4/4) mottles; weak medium prismatic structure parting to moderate medium subangular blocky; friable; few thin discontinuous dark brown clay films; common fine dark reddish brown soft oxides; common discontinuous light gray (10YR 7/2) silt and fine sand on prism faces; strongly actd; gradual smooth boundary.

B21 tg 71L1142 94 to 109 cm (37 to 43 inches). Grayish brown (10YR 5/2) and light brownish gray (10YR 6/2) light to medium silty clay loam; common fine medium distinct reddish brown (5YR 4/4) to yellowish red (5YR 4/6) mottles; weak medium prismatic structure parting to weak medium subangular blocky; friable; thin discontinuous dark brown (10YR 3/3) clay films and dark gray (10YR 4/1) clay lines pores; common fine dark reddish brown soft oxides;

SOIL \_\_\_\_Guckeen clay loam SOIL Nos. S641owa-40-3 LOCATION Hamilton County, Iowa

SOIL SURVEY LABORATORY Lincoln, Nebraska LAB. Nos. <u>19910-19919</u> April 1968

General Methods: 1A, 1B1b, 2A1, 2B Size class and particle diameter (mm) Total Sand Sult Coarse fragments 2A2 3B2 3B1 Silt Clay Fine Int. III Sand Medium Int. II Depth Very fine 2-19 2-19 coarse (2-1) ( < 0 002) (1-0 5) (0.5-0.25) (0.25-0.1) (0.1-0.05) (0.05-0.02) (0.02-0.02) (0.2-0.02) (2-0.05) <0.07k (In ) (0 05-0 002) (2-0 1) (vol.) (wt.) <u>a</u>  $\leftarrow$  Pct of  $< 19mm \rightarrow$ 26,2 39·3 37·4 3.8 5.0 6.3 5.7 6.4 16,1 34.5 28.0 1.0 77.2 Aτ 19.9 tr 8-14 Al2 25.6 37.0 2.1 4.2 4.8 8.8 15.0 22.4 25.6 77.5 19.9 tr 26.8 35.1 38.1 4.2 4.8 4.6 9.4 <u>13.</u>0 24.6 2.2 22.1 20.4 4 38.3 28.5 19-24 6.9 B21 33.2 2.0 4.9 9.9 12.3 tr 20.9 21.6 75.4 5.7 5.3 24-31 B22 33.3 34.4 28.2 38.5 2.5 5.0 5.6 10.8 17.4 12.2 7.9 25.4 25.4 71.1 tr 8.2 31-37 <u> 36.3</u> ž9.3 22.8 27.8 26.2 LITB238E 11.0 13.5 70.4 37-42 4.8 9 33.4 39.3 37.9 38.5 38.8 4.9 10.7 13.5 25.8 25.4 71.3 TTB32 27.3 26.6 5.0 8.0 27.5 5 5.5 6.3 5.5 5.7 5.9 42-52 IIB33 35.5 10.5 11.7 11.6 7.7 8.8 13.5 14.1 24.4 27.8 5 27.0 69.0 9 35.1 34.5 3.4 2.8 26.4 24.4 52-65 IIB34 5.6 29.5 26.3 70.1 24.8 70.5 IIC 26.7 14.0 8.6 25.9 12 6Ala Carbonate Bulk density 4D1 Water content ρH Ext. as CaCOa 4Ald 4Alb 4Blc 4B2 4C1 8C1 a C/N Depth Organic Nitrogen 3Ã1a 1/3-to 6Elb 1/3-1/3-Air- $1/\bar{3}$ -15-Iron carbon (In) (1:1) 6E2a <0.002 COLE 15-Bar 8.8 Bar Ber Dry Bar Bar b Fe <2mm THE ç Pct Pet Pct. Pct. Pct **E/C**( 0-8 0.040 27.8 3.55 1.29 1.45 13.9 0.18 5.5 0.047 8-14 2.63 1.31 1.51 26.0 14.7 0.15 5.6 <u>14-19</u> 5.7 5.8 2.06 1.32 0.056 26.3 0.15 19-24 1.41 1.37 1.66 0.06 27.0 14.7 0.17 24-31 0.72 tr(s) 1.36 1.71 0.078 27.3 14.5 0.17 6.5 31-37 0.30 19 31 1.36 0.054 25.7 12.0 0.18 37-42 42-52 1.48 0.034 21.3 10.8 0.21 24 1 1.41 1.64 0.15 7.7 24 1.48 0.09 2 1.56 1.72 0.030 20.5 11.0 0.14 8.0 52-65 1.54 1.70 0.030 20.5 10.8 8.0 0.13 65-72 0.13 22 1 1.48 1.59 1.76 0.030 20.3 12.0 0.12 8.2 5A3a 5A1a 8D3 Extractable bases 5Bla 6нда Base saturation 503 6N2a 602a | 6P2a 692a Ext. 5C1 Depth Acid- Sum ca/Mg Sum (In ) Cm Mg Na ĸ Sum ity Cations NH<sub>L</sub>OAc Cation NH<sub>L</sub>OA Pct Pct q/100 0-8 21.0 5.7 0.1 0.6 27.4 12.9 40.3 38.7 30.1 3.7 68 91 8-14 20.3 0.1 0.5 27.2 11.5 29.3 3.2 70 93 16.3 18.9 95 14-19 0.6 26.1 37.2 27.5 2.9 70 0.1 19-24 8.7 35.8 27.7 2.7 76 98 19.2 7.2 0.6 27.1 0.1 24-31 18.0a 0.6 26.3 4.9 31.2 27.6 2.4 84 95 17.6e 0.1 31 - 37 14.8d 5.7e 21.1 19.2 2.6 0.1 0.5 37-42 4.8e 0.1 0.4 19.2 17.3 2.9 13.9d 4.1 3.5e 18.5 42-52 14.5d 0.1 0.4 16.1 52-65 13.9d 3.le 0.4 17.5 15.6 4.5 0.1 13.8d 0.5 18.2 65-72 13.7e 0.2 15.5 3.7 a. Carbonate comprises 10 to 20 rement of the sand below 31 inches. b.  $24~{\rm kg/m}^2$  to 60 inches (Methou oA). Ratios to Clay 8D1 Depth 15-**B**ar c. Calculated to include volume but not weight of 2-19 mm material NH),OAc (In) (Method 3B2). CÉC Water d. KC1-TEA extract (Method 6N4b). e. KC1-TEA extract (Method 604b). 0-8 0.87 0.40 8-14 0.79 0.40 0,38 14-19 0.72 19-24 0.72 0.38 24-31 0.72 0.38 31-37 0.66 0.41

37-42

42-52

52-65 65-72

0.63

0.61

0,59

0.40

0.41

0.41

Pedon classification: Aquic Hapludoll; fine, montmorillonitic, mesic.

Series classification: (Same as pedon).

Soil: Cuckeen clay loam.

Soil Boi: S64-Iowa-40-3 (LSL Nos. 19910 - 19919), Location: Hamilton County. Iows: 432 feet north and 856 feet west of the SE corner of Sec. 18, T. 87 N., R. 25 W.

Vegetation and land use: Clover; cropland.

Parent material: About 3 feat of moderately fine to fine textured glacial sediments over glacial till.

Slope: On the crest of a slightly undulating high extending in a NW-SE direction. The slope is about 1 percent at the site with the drainage to the northeast. Undulating Late Wisconsin till plain.

Drainage: Somewhat poorly drained.

Permeability: Slow.

Root distribution: Roots were many to 24 inches, common from 24 to 34 inches, and very few from 34 to 50 inches. Described by: R. I. Dideriksen, C. S. Fisher, and M. P. Koppen; September 16, 1964.

(Colors are for moist soil unless otherwise stated)

Ap 19910 0 to 20 cm (0 to 8 inches). Black (N 2/0) medium clay loam, black (N 2/0 to 10YR 2/1) when kneaded, very dark gray (10YR 3/1) when dry; cloddy and weak coarse angular blocky structure; friable to firm when moist, hard when dry; many clean fine sand grains; medium acid (pH 6.0); abrupt smooth boundary.

A12 19911 20 to 35 cm (8 to 14 inches). Black (10YR 2/1) heavy clay loam, kneaded color the same, very dark gray (10YR 3/1) when dry; moderate very fine subangular blocky structure and some fine granular; friable; many clean sand grains; very few pebbles; slightly acid (pH 6.2); clear smooth boundary.

B1 19912 35 to 48 cm (14 to 19 inches). Black (10YR 2/1) heavy clay loam; some very dark grayish brown (10YR 3/2) peds in the lower part; very dark gray (10YR 3/1) when kneaded; dark gray (10YR 4/1) when dry; moderate very fine subangular blocky structure; friable to firm; sand grains are evident; more fine pebbles than in the horizon above; a few yellowish brown soft oxides; slightly acid (pH 6.3); clear smooth boundary.

B21 19913 48 to 60 cm (19 to 24 inches). Very dark grayish brown (10YR 3/2) light clay; faces of peds very dark gray (10YR 3/1) with 20 percent black (10YR 2/1); moderate very fine subangular blocky structure; friable to firm; very few thin discontinuous clay films; few fine and medium tubular pores; very few strong brown soft oxides; pebbles and sand grains are dull and coated; neutral (pH 6.6); clear smooth boundary.

B22 19914 60 to 78 cm (24 to 31 inches). Olive brown (2.5Y 4/4) and dark grayish brown (2.5Y 4/2) light clay; faces of peds dark grayish brown (2.5Y 4/2) and 30 percent very dark gray (10VR 3/1); weak fine prismatic structure parting to moderate to strong fine subangular blocky; firm; thin continuous clay films on fine structure; common fine tubular pores; a few fine strong brown soft oxides; few pebbles; neutral (pH 6.6); clear wavy boundary.

IditB23 19915 (Sampled 31-37 inches) 78 to 85 cm (31 to 34 inches). Grayish brown (2.5Y 5/2) to dark grayish brown (2.5Y 4/2) heavy clay loam; faces of peds dark grayish brown (2.5Y 4/2) with 10 percent very dark grayish brown (10YR-3/2) few wary time faint office gray (5Y 5/2) mottles; week modium origination continuous continuous



tubular porce; many yellowish brown soft oxides; many fine black soft oxides; this horizon has some 1/2- to 1-inch diameter lime rock but the matrix is noncalcareous; neutral (pH 6.6); clear wavy boundary,

U S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

|                                              | SOIL <u>Guel</u> | keen clay  | 7 loam          |                   | \$0IL        | Nos. 8641       | owa-94-2       | LOCATION _                | Webster County               | , Iowa |                      |  |
|----------------------------------------------|------------------|------------|-----------------|-------------------|--------------|-----------------|----------------|---------------------------|------------------------------|--------|----------------------|--|
|                                              | SOIL SURVE       | Y LABORATO | RY Lincoln      | ı, Nebraska       |              |                 |                | LAB. Nos.                 | 19900-19909                  | April  | 1968                 |  |
|                                              |                  |            | : 1A, 1B1       |                   |              |                 |                |                           |                              |        |                      |  |
|                                              |                  |            | Total           |                   |              | Sand            |                | e diameter (mm) 3<br>Silt | BAL .                        | i      | Coarse fragments 2A2 |  |
|                                              | Depth            | Horizon    | Sand Silt       | Clay Very coarse  | Coarse       | Medium fine     |                | Int, 🎞                    | Int. II                      | .cz).  | 3B2 3B1<br>2-19 2-19 |  |
|                                              | ( <u>In</u> )    | Į.         | (2-0 05) (0 05- | J[= 0.002)1 .s 10 | 1 (1=0.5) 10 | 0 5-0.25Ht0 25- | 0 100 1-0 0500 | 1 0271 1151 50 1152       | NU 3-U USII 13-U IV 18 (1) ( | 741    | 11 (11)              |  |
| , <u> </u>                                   |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
| 1                                            | ı                |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
|                                              |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
|                                              |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
|                                              |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
| I                                            |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
|                                              |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
|                                              |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
|                                              |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
| 4                                            |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
|                                              |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
| . )                                          |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
| i                                            |                  |            |                 |                   | •            |                 |                |                           |                              |        |                      |  |
| · .                                          |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
| <u> </u>                                     |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
|                                              |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
|                                              |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
|                                              |                  |            | <b>8.</b> 3-₹   |                   |              |                 |                |                           |                              |        |                      |  |
|                                              |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
| , <u> </u>                                   |                  |            | ,               |                   |              |                 |                |                           |                              |        |                      |  |
|                                              |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
|                                              | <u> </u>         | ·          |                 | -                 |              |                 |                |                           | ·                            |        |                      |  |
| — — — — — — — — — — — — — — — — — — —        |                  |            |                 |                   | . / <u></u>  |                 |                |                           |                              |        |                      |  |
| <u> </u>                                     |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
| -1                                           |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
| ( <del></del>                                |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
|                                              |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
| /4 <del></del>                               | _``` <u></u>     |            |                 |                   |              | \               |                |                           |                              |        |                      |  |
|                                              |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
|                                              | -                |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
| <b>, –</b> ,                                 |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
|                                              |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
| 1                                            |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
| <u>.                                    </u> |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
|                                              |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
|                                              |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
| A) /                                         |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
|                                              |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
| <del></del>                                  |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
|                                              | -                |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
| 9 <sub>7</sub> .x.                           | <u> </u>         |            |                 |                   |              |                 |                |                           |                              |        |                      |  |
| E. j • ■ ,                                   |                  |            |                 |                   |              |                 |                |                           |                              |        |                      |  |

Pedon classification: Aquic Hapludoll; fine, montmorillonitic, mesic. Series classification: (Same as pedon).

Soil: Guckeen clay loam.

Soil no.: S64-Iowa-94-2 (LSL Nos. 19900 - 19909).

Location: Webster County, Iowa; 857 feet south and 1,120 feet east of the NW corner of Sec. 26, T.86 N., R. 28 W.

Vegetation and land use: Red clover; cropland.

Parent material: About 3 feet of moderately fine to fine textured glacial sediments over glacial till.

Slope: 2 percent convex slope to the NW. Gently undulating Late Wisconsin till plain.

Permeability: Slow.

Root distribution: Roots were abundant to 16 inches, common from 16 to 36 inches, and very few to no roots were observed below 36 inches.

Described by: R. I. Dideriksen, C. S. Fisher, and M. P. Koppen; September 14, 1964.

(Colors are for moist soil unless otherwise stated)

Apl 19900 0 to 13 cm (0 to 5 inches). Black (10YR 2/1) clay loam, the same color when crushed, very dark gray (10YR 3/1) when dry; cloddy parting to weak fine granular structure; friable; distinct sand grains evident; neutral (pH 6.6); abrupt smooth boundary.

13 to 23 cm (5 to 9 inches). Black (10YR 2/1) clay loam, the same color when crushed, very dark gray (10YR 3/1) when dry; moderate fine and medium angular blocky and fine subangular blocky structure; friable; distinct sand grains; neutral (pH 6.6); clear smooth boundary.

All 19902 23 to 40 cm (9 to 16 inches). Black (10YR 2/1) clay loam; moderate fine subangular blocky and very fine granular structure; dark gray (10YR 4/1) when dry; friable; a few peds in the lower part are very dark grayish brown (2.5Y 3/2); a few 1/8-inch pebbles; sand grains are distinct; slightly acid (pH 6.4); gradual smooth boundary.

 $\underline{\text{B1 19903}}$  40 to 53 cm (16 to 21 inches). Very dark gray (10YR 3/1) and about 25 percent very dark grayish brown (2.5Y 3/2) heavy clay loam; black (10YR 2/1) and about 20 percent very dark gray (10YR 3/1) moderate fine and very fine subangular blocky structure; friable to firm; a few pebbles; slightly acid (pH 6.4); clear smooth boundary.

B21 19904 53 to 70 cm (21 to 28 inches). Dark grayish brown (2.5Y 4/2) light clay; faces of peds very dark grayish brown (2.57 3/2) and very dark gray (10YR 3/1); some peds are very dark gray (10YR 3/1) throughout; weak medium prismatic and moderate fine and medium subangular blocky structure; firm; thin distinct clay films; many fine inped tubular pores; a few very fine soft dark yellowish brown oxides; some root hole fills are black (10YR 2/1); a few small shale and quartz pebbles and a few pebbles up to about 1 inch in diameter; sand grains are not clean; slightly acid (pH 6.2); clear smooth boundary.

B22 19905 70 to 90 cm (28 to 36 inches). Dark grayish brown (2.5Y 4/2) light clay; faces of peds dark gray (10YR 4/1) and dark grayish brown (2.5Y 4/2); few fine yellowish brown (10YR 5/6) mottles; moderate fine prismatic structure parting to strong medium subangular blocky; firm; thin discontinuous clay films on the smaller peds; common fine tubular pores; a few black (IOYR 2/1) fills in root channels and pores; few stones and shale fragments; common dark brown oxide concretions; slightly acid (pH 6.2); clear smooth boundary.

90 to 103 cm (36 to 40 inches). Light olive brown (2.5Y 5/4) and about 20 percent olive gray (5Y 5/2) clay loam; weak fine prismatic structure parting to weak medium subangular blocky structure; friable to firm; some peds have dark gray (10YR 4/1) on the vertical faces; distinct clay flows and pore fills of very dark gray (10YR 3/1) to dark gray (10YR 4/1); many fine inped tubular pores; common very fine yellowish brown (10YR 5/8) soft oxides; mildly alkaline (pH 7.6); clear wavy boundary.

103 to 123 on 1/10 to 49 inches Mottled light alive brown (2.5V.5/4) and grow to light

<sup>6/1)</sup> light clay loam; weak medium subangular blocky structure with some vertical cleavage; friable to firm; some dark gray (10YR 4/1) coats or fills in pores; some gray (10YR 6/1) lime coatings on vertical faces and some lime segregated in pores; common 1-to 1-inch diameter lime rock pebbles and other pebbles; few fine red and strong brown oxides; few shale fragments; moderately alkaline (pH 8.2+); strongly effervescent; gradual smooth boundary.

<sup>123</sup> to 153 cm (48 to 60 inches). Mottled yellowish brown (10YR 5/4) and gray to light gray (5Y 6/1) losm; very weak subangular blocky structure with some vertical faces; friable; many fine pores; lime is segregated in the pores; many fine strong brown and red oxides; common pebbles and stones; moderately alkaline (pH 8.2+); strongly effervescent; diffuse smooth boundary.

SOIL NO - - - - - 57014-67-3

COUNTY + - - MONONA

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

| PENEKAL                                                                                                                                                               |                                                                                                                                 | D2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1A,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31B,2A                                                                                            | 1.2B                                                                                                                                                       |                                                                                                                       |                                                                      | SAMP                                                          | E NOS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70L1                                    | 143-70L                                                                            | .1151                                                                                                  |                                                                       | N                                                       | VEMBER                                   | 1975                                                         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| <br>-9TH                                                                                                                                                              | 1904                                                                                                                            | 20N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   |                                                                                                                                                            |                                                                                                                       |                                                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                                                    |                                                                                                        | 4, 3Al,                                                               |                                                         | 3410                                     |                                                              |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PATIO                                                        |
| CH                                                                                                                                                                    | HUXI                                                                                                                            | ZUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SAND<br>2-<br>-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S1LT<br>•05-                                                                                      | CLAY<br>LT                                                                                                                                                 | FINE<br>CLAY<br>LT<br>•0002                                                                                           | vcos<br>2-<br>2 1                                                    | CORS<br>1-                                                    | SAND -<br>MEDS<br>.5-<br>.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FNES<br>-25-                            | VFNS<br>-10-                                                                       | COSI<br>-05                                                                                            | -SILT-<br>FNSI<br>-02<br>-002                                         | VFS I<br>- 005-                                         | FAML<br>TEXT<br>SAND<br>21               | INTR<br>II<br>.2-<br>-02                                     | FINE<br>CLAY<br>TO<br>CLAY                        | NON-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8D1<br>15-<br>BAR<br>TO                                      |
| 000-14                                                                                                                                                                | AP                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 78.4                                                                                              | 16.5                                                                                                                                                       | 9.9                                                                                                                   | .0                                                                   | TR                                                            | ٠.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .5                                      |                                                                                    |                                                                                                        | 30.5                                                                  |                                                         |                                          | 52.7                                                         |                                                   | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |
| 014-31<br>031-42<br>042-56<br>056-66<br>066-98<br>098-124<br>124-135                                                                                                  | 61<br>62<br>63<br>64<br>65<br>66                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.9<br>4.1<br>16.5<br>8.2<br>34.1<br>13.0<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 78.6<br>81.0<br>73.0<br>75.3<br>55.3                                                              | 14.5<br>14.9<br>10.5<br>16.5<br>10.6<br>15.4<br>33.3                                                                                                       | 6.0<br>6.9                                                                                                            | .0<br>.0<br>.0<br>.0<br>.0                                           | .0                                                            | TR<br>•1<br>•2<br>•1<br>•3<br>•2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .3<br>.4<br>.8<br>1.1<br>2.1<br>.8      | 6.6<br>3.6<br>15.5<br>7.0<br>31.7<br>11.9                                          | 41.9<br>40.2<br>56.7<br>35.8<br>43.8                                                                   | 36.7<br>40.8<br>7 16.3<br>39.5<br>11.5<br>3 21.8<br>9 39.5            | 3.2<br>3.5                                              | .3<br>1.0<br>1.2<br>2.4<br>1.1           | 48.7<br>44.1<br>72.7<br>43.8<br>77.3<br>62.2<br>26.9<br>36.3 | 41<br>46                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .50<br>.51<br>.53<br>.48<br>.52<br>.49                       |
| UEPTH                                                                                                                                                                 | (PARTI                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   |                                                                                                                                                            |                                                                                                                       |                                                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                                                    |                                                                                                        |                                                                       | NTENT-                                                  |                                          | CARBO                                                        | DNATE                                             | (PH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ı – –)                                                       |
| CM                                                                                                                                                                    | GT<br>2<br>PCT                                                                                                                  | GT<br>75<br>PCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20-5                                                                                              | 5-2                                                                                                                                                        | LŤ                                                                                                                    | 20-2<br>PCT                                                          | 1/3~<br>BAR                                                   | DRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | COLE                                    | 1/10<br>BAR<br>PCT                                                                 |                                                                                                        | BAR                                                                   | WRD<br>CM/<br>CM                                        |                                          | LT<br>2<br>PCT                                               | 3A1 A<br>LT<br>-002<br>PCT                        | 1/1<br>H20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/2<br>CAÇL                                                  |
| 000-14<br>014-31<br>031-42<br>042-56<br>056-66<br>066-98<br>098-124<br>124-135                                                                                        | 0<br>0<br>0                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>0<br>0                                                                                       |                                                                                                                                                            | 98<br>97<br>91<br>98<br>99                                                                                            | 0<br>0<br>TR<br>0                                                    | 1.48<br>1.40<br>1.30<br>1.40A<br>1.30A<br>1.37                | 1.45<br>1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .012                                    | 28.4<br>33.1<br>36.1<br>36.2<br>37.4                                               | 27.7                                                                                                   | 7.3<br>7.6<br>5.6<br>7.9                                              | .29<br>.33                                              | 3.6B<br>2.8B<br>1.78<br>1.18<br>1.9B     | 7<br>7<br>7<br>6                                             | 0 0 0 0                                           | 8.0<br>8.0<br>7.9<br>8.1<br>7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.4<br>7.6<br>7.6<br>7.6<br>7.6<br>7.7<br>7.5                |
| DEPTH (                                                                                                                                                               | ORGANI<br>6A1A<br>ORGN<br>CAR8                                                                                                  | C MATT<br>681A<br>NITG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TER }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IRON<br>6C2A<br>EXT<br>FE                                                                         | PHUS<br>651A<br>forl                                                                                                                                       | (EX<br>6N2E<br>CA                                                                                                     | TRACT.<br>602D<br>MG                                                 | 6P2A<br>Na                                                    | 6Q2A<br>K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SUM<br>EXTB                             | 6H1A<br>Bacl<br>Tea                                                                | 6G1E<br>KCL<br>EXT                                                                                     | CAT<br>SASA<br>EXTB<br>ACTY                                           | 5A6A<br>NHAÇ                                            | 8DI<br>NHAC<br>TO                        | RATIO<br>8D3<br>CA<br>TO                                     | CA<br>SF<br>SAT<br>NHAC                           | (BASE<br>5C3<br>EXTB<br>ACTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SATE<br>SCI<br>NHAC                                          |
| 000-14                                                                                                                                                                | PC T<br>1.28C                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   |                                                                                                                                                            |                                                                                                                       |                                                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | ) ( <del>-</del> -                                                                 |                                                                                                        |                                                                       | 16.2                                                    |                                          | MG                                                           |                                                   | PCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |
| 014-31<br>031-62                                                                                                                                                      | .5/                                                                                                                             | .052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   |                                                                                                                                                            | 17.QD                                                                                                                 |                                                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                                                    |                                                                                                        |                                                                       | 14-7                                                    | 99                                       |                                                              |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |
|                                                                                                                                                                       |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   |                                                                                                                                                            |                                                                                                                       |                                                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                                                    |                                                                                                        |                                                                       |                                                         |                                          |                                                              |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |
| 056-66                                                                                                                                                                |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   |                                                                                                                                                            |                                                                                                                       |                                                                      | _                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.2                                    |                                                                                    |                                                                                                        |                                                                       | 15.6                                                    | -95                                      |                                                              |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |
| 066-98                                                                                                                                                                | •57<br>•42                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0                                                                                               |                                                                                                                                                            | 17.10                                                                                                                 |                                                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                                                    |                                                                                                        |                                                                       |                                                         |                                          |                                                              |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |
| 066-98<br>098-124<br>124-135                                                                                                                                          | • 42<br>• 52<br>• 65                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .9<br>1.0                                                                                         |                                                                                                                                                            | 17.10<br>15.20<br>20.10                                                                                               | 4.30                                                                 | .9                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.1                                    |                                                                                    |                                                                                                        |                                                                       | 14.7                                                    | .95                                      |                                                              |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |
| 066-98<br>098-124<br>124-135<br>135-185                                                                                                                               | .42<br>.52<br>.65<br>.58                                                                                                        | ATED P<br>BC18<br>PH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0                                                                                               | NA<br>SE<br>SAR                                                                                                                                            | 15.20<br>20.10<br>SALT<br>805<br>TOTL<br>SOLU                                                                         | 4.3D<br>6.6D<br>GYP<br>6F1A                                          | 1.6<br>(<br>8A1A<br>EC                                        | .7<br>.9<br><br>6N18<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.1<br>29.2<br>                        | SATURA<br>6Pla<br>NA                                                               | T10N<br>601A<br>K                                                                                      | EXTRACT<br>611A<br>CO3                                                | 14.7<br>18.5<br>8A1-<br>6JIA<br>HC03                    | .95<br>.86<br><br>6K1A<br>CL             | 6LIA<br>SO4                                                  | 6M1A<br>NO3                                       | 4F1<br>LQID<br>LMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4F2<br>PLST                                                  |
| 066-98<br>098-124<br>124-135<br>135-185<br>DEPTH                                                                                                                      | .42<br>.52<br>.65<br>.58<br>(SATURA<br>8E1 (<br>REST<br>OHM-<br>CM                                                              | ATED P<br>BC1B<br>PH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8A<br>8A<br>H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .9<br>1.0<br>NA<br>502<br>ESP                                                                     | 5 E                                                                                                                                                        | 15.20<br>20.10<br>SALT<br>805<br>TOTL<br>SOLU                                                                         | 4.3D<br>6.6D<br>GYP<br>6F1A                                          | 1.6<br>(<br>8A1A<br>EC                                        | .7<br>.9<br><br>6N18<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.1<br>29.2<br>                        | SATURA<br>6Pla<br>NA                                                               | T10N<br>601A<br>K                                                                                      | EXTRACT<br>611A<br>CO3                                                | 14.7<br>18.5<br>8A1-<br>6JIA<br>HC03                    | .95<br>.86<br><br>6K1A<br>CL             | 6LIA<br>SO4                                                  | 6M1A<br>NO3                                       | 4F1<br>LQID<br>LMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4F2<br>PLST                                                  |
| 066-98<br>098-124<br>124-135<br>135-145<br>DEPTH<br>CM<br>000-14<br>014-31<br>031-42<br>042-56<br>046-98<br>098-124<br>124-135                                        | .42<br>.52<br>.65<br>.58<br>(SATUR.<br>8E1 REST OHM-<br>CM                                                                      | ATED P<br>BC18<br>PH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8A<br>8A<br>H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .9<br>1.0<br>NA<br>502<br>ESP<br>PCT                                                              | SE<br>SAR                                                                                                                                                  | 15.20<br>20.1D<br>SALT<br>8D5<br>TOTL<br>SOLU<br>PPM                                                                  | 4.3D<br>6.6D<br>GYP<br>6F1A                                          | .9<br>1.6<br>(<br>8A1A<br>EC<br>MMHOS/<br>CM                  | .7<br>.9<br><br>6N18<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.1<br>29.2<br>                        | SATURA<br>6Pla<br>NA                                                               | T10N<br>601A<br>K                                                                                      | EXTRACT<br>611A<br>CO3                                                | 14.7<br>18.5<br>8A1-<br>6JIA<br>HC03                    | .95<br>.86<br><br>6K1A<br>CL             | 6LIA<br>SO4                                                  | 6M1A<br>NO3                                       | 4F1<br>LQID<br>LMIT<br>PCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4F2<br>PLST<br>INDX                                          |
| 066-98<br>098-124-135<br>135-145<br>DEPTH<br>000-14<br>014-31<br>031-42<br>042-56<br>066-98<br>135-185<br>MICROMO<br>GRA<br>TIO                                       | - 42<br>- 52<br>- 65<br>- 58<br>(SATUR.<br>8E1<br>(REST<br>CHM-<br>CM<br>1300<br>RPHOLOG<br>CM CY<br>MANY<br>1NS- D'<br>N- CAR  | T.6  GY (4E  G | PCT  42.2  11).  WESE GRAFFEE | 9<br>1.0<br>NA<br>5U2<br>ESP<br>PCT<br>5<br>DRMAL<br>(AINS AINS OIS OO2:<br>ENTS OIS LARGE (A) ES | SE<br>SAR<br>2<br>2<br>TO STRARE SUI:<br>- SEDI:<br>OS MER IN<br>STIMATI                                                                                   | 15.20 20.1D SALT 8D5 TUTL SOLU PPM 490  ATTIFICA BROUNDE MENTARY H OCCUR THE SAM ED.                                  | 4.3D 6.6D GYP 66F1A FCT 1.TION   1 D MICE 7 ROCKE                    | 1.58  HAVE BARNES BETIONNES                                   | -7<br>-9<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.1<br>29.2<br>6018<br>MG<br><br>TO 4. | SATURA 6P1A NA 4.8  4.8  MM WID EGATES STHE DARK RE                                | TION<br>6Q1A<br>K<br>MEO<br>.7<br>.7<br>.7<br>.7<br>.7<br>.7<br>.7<br>.7<br>.7<br>.7<br>.7<br>.7<br>.7 | EXTRACT 611A CO3 / LITER                                              | 14.7 18.5 8A1- 6J1A HC03 1                              | .95<br>.86<br>6KIA<br>CL<br>ONCENT       | FRATIONE ALTER                                               | MIA NO3                                           | AFILQID<br>LQID<br>LMIT<br>PCT<br>34E<br>32E<br>32E<br>39E<br>AINS<br>ACEOUS<br>LY ORIE<br>55 MM A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4F2<br>PLST<br>INDX<br>7<br>6 4<br>16<br>02-+1<br>NTA-<br>RE |
| 066-98<br>098-124-135<br>135-185<br>DEPTH<br>CM<br>000-14<br>014-31<br>031-42<br>042-56<br>066-98<br>086-124<br>124-135<br>135-185<br>MICROMO<br>GRA<br>VIER<br>DEPTH | .42<br>.58<br>.58<br>(SATUR.<br>8E1 (REST<br>OHM-<br>CM<br>CM<br>CM<br>CM<br>CM<br>CM<br>CM<br>CM<br>CM<br>CM<br>CM<br>CM<br>CM | T.6  7.6  7.6  7.6  THERS BONATE ARE R R R R R R R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PASTE) 8A H20 PCT 42.2 42.2 E1). WED NUESE GRAINEY ARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .9 9 1.0 NA 5U2 ESP PCT  S S AAINS / AAINS / (A) E/ E         | SE<br>SAR<br>2<br>2<br>2<br>2<br>3<br>5<br>5<br>5<br>5<br>6<br>6<br>7<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 15.20 20.10 SALT 8D5 TOTAL SOLU PPM 490 490 490 ENERTARY M OCCUR ED. ENETRAT RATED A KGI ANGO GARGO GARGO GARGO GARGO | 4.3D 6.6D GYP 6F1A TION I D MICI Y ROCK, I UNIFIED HAI I I I I I I I | 1.68 HAVE BAROCKEY 1.58  1.58  HAVE BAROCKEY DESTIMATE KG/M ! | 8-5  NNDS 5  ITALL IN  BLACK  HE OF TO A  A O OF TO A  B | 21.1<br>29.2<br>4.6018<br>MG<br>        | SATURA 6P1A NA 4-8 4-8 MM WID REGATES S THE DARK RE DARK RE 10-6 CM TINED C 1 OF 1 | TION 601A K MEO 7                                                                                      | EXTRACT 611A CO3 / LITER IT CONT/ IT IN CL/ IC IS VI - BROWN IS SLOW! | 14.7 18.5 8A1- 6JIA HCO3 1 AIN A CO Y- SORY UNIT I TREG | .95<br>.86<br>6KIA<br>CL<br>ONCEN ME ARI | FRATION<br>E ALTER<br>MITH MIGRAINS                          | MIA NO3  )  N OF GRED MICE EAK CLA - 020  K DENSI | 4F1<br>LQID<br>LMIT<br>PCT<br>34E<br>32E<br>32E<br>39E<br>ALESS<br>WHA ALESS<br>TY CRUSE<br>15 MM ALESS<br>TY CRUSE<br>15 MM ALESS<br>TY CRUSE<br>15 MM ALESS<br>TY CRUSE<br>15 MM ALESS<br>TY CRUSE<br>TY CRUSE<br>15 MM ALESS<br>TY CRUSE<br>TY CRUSE<br>T | 4F2<br>PLST<br>INDX<br>7<br>6<br>4<br>16<br>021<br>NTA<br>RE |

Pedon classification: Mollic Udifluvent; coarse-silty, mixed, calcareous, mesic.

Series classification: (Same as pedon).

Soil: Haynie silt loam .

Soilno.: S70-Iowa-67-3 (LSL Nos. 70L1143 - 70L1151).

Location: Monona County, Iowa; about 2 miles northwest of Whiting, Iowa; 660 feet east and 201 feet north of the southwest corner of the NE' NW' sec. 34, T. 85N., R. 46 W.

Vegetation and land use: Soybeans, harvested; cropland.

Parent material: Recently deposited calcareous alluvium, dominantly coarse silt loam or very fine sandy loam.

Physiography: Nearly level bottom land east of old stream channel, about 5½ miles east of Missouri River and about

Relief: Nearly level.

Slope: Less than .5 percent; area currently being land-graded.

Drainage: Well drained and moderately well drained.

Ground water: None; seldom flooded.

Permeability: Moderate.

Described by: J. R. Culver, C. S. Fisher, J. Worster, and F. F. Riecken; October 28, 1970.

(Colors are for moist soil unless otherwise stated)

Ap 70L1143 0 to 14 cm (0 to 6 inches). Very dark grayish brown (10YR 3/2) silt loam, grayish brown (2.5Y 5/2) dry; cloddy parting to weak fine granular structure; some evidence of horizontal cleavage and stratification of lighter colors in the lower part; friable; few very dark brown (10YR 2/2) and dark brown (10YR 3/3) spots of decomposed organic material; slightly effervescent; mildly alkaline; clear smooth boundary.

C1 70L1144 14 to 31 cm (6 to 12 inches). Stratified grayish brown (10YR 5/2) and dark grayish brown (10YR 4/2) tending to 2.5Y hue; light silt loam; few fine prominent strong brown (7.5YR 5/6) and yellowish red (5YR 4/6) mottles, few fine distinct light brownish gray (10YR 6/2) mottles on faces of horizontal lenses; massive; horizontal cleavage; friable to very friable; strongly effervescent; mildly alkaline; clear smooth boundary.

C2 7011145 31 to 42 cm (12 to 16 inches). Stratified grayish brown (2.5Y 5/2) and dark grayish brown (2.5Y 4/2) silt loam; thin darker strata less than 2 mm in thickness; few fine prominent strong brown (7.5YR 5/6) and few fine distinct light brownish gray (10YR 6/2) mottles on faces of horizontal lenses; massive; horizontal cleavage; common %- to 1/8-inch lenses of very fine sandy loam; very friable; strongly effervescent; mildly alkaline; clear smooth boundary.

| SOIL CLASSIFICATION-ARGIAQUIC ARGIALBOLL FINE, MONTMORILLOMITIC, MESIC SERIES                                                                            |                                                            | U. S. DEPARTMENT OF AGRICUL<br>SOIL CONSERVATION SERVICE M<br>SOIL SURVEY INVESTIGATIONS<br>LINCOLN, NEBRASKA | RTSC                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| SOIL ND S7110WA-93-2 COUNTY                                                                                                                              | MAYNE                                                      |                                                                                                               |                                               |
| GENERAL METHODS1A,1818,2A1,28                                                                                                                            | SAMPLE NOS. 7111146-7111155                                | OCTOBER 1974                                                                                                  |                                               |
|                                                                                                                                                          | -                                                          | ILT) FAML INTR FINE NON-<br>FNSI VFSI TEXT II CLAY CO3-                                                       |                                               |
| CM (                                                                                                                                                     | .5 .25 .10 .05 .02                                         |                                                                                                               | TO                                            |
| 000-18 A11 2.4A 67.7 29.9 18.6 -1<br>018-33 A12 5.2A 72.4 22.4 13.4 -1<br>033-40 A21 6.9A 74.5 18.6 9.7 .2                                               | .3 .3 1.5 3.0 30.2                                         | 46.0 9.1 1.2 23.3 62<br>42.2 8.0 2.2 34.2 60<br>45.0 5.0 3.2 34.4 52                                          | .54<br>.52<br>.45                             |
| 046-66 A22 8.6A 73.4 18.0 9.5 .4<br>066-79 B8A 8.1A 67.9 24.0 15.1 .2                                                                                    | 1.3 .7 2.2 4.0 28.9<br>.8 .7 2.3 4.1 26.5                  | 44.5 5.8 4.6 34.3 53<br>41.4 4.9 4.0 32.1 63<br>36.4 4.1 3.2 28.4 70                                          | .47<br>.47                                    |
| 091-114 B22T 6.5A 56.6 36.9 26.63                                                                                                                        | .5 .6 2.2 2.9 19.8                                         | 36.8 4.3 3.6 24.1 72<br>36.2 3.8 6.5 23.4 70                                                                  | <u>.48</u>                                    |
| 114-152 B23T 9.6A 54.4 36.0 25.1 .3<br>152-178 B316T 11.4A 55.8 32.8 21.8 .4                                                                             | 1.1 1.9 4.5 3.5 19.0                                       | 36.8 4.5 7.9 25.0 66<br>29.1 3.4 14.9 31.7 66                                                                 | .50                                           |
| 178-203 B32GT 21.4A 49.6 29.0 19.1 .7                                                                                                                    | 2.3 3.6 6.3 6.3 20.3                                       | 2901 307 1407 3101 00                                                                                         |                                               |
| OEPTH (PARTICLE 512E ANALYSIS, MM, 3B, 3B1, 3B2)                                                                                                         | BULK DENSITY 11 WATER                                      | CONTENT ) AVAIL (PH 8C1A                                                                                      | )                                             |
| GT GT 75-20 20-5 5-2 LT 20-2 2 75 .074 PCT CM PCT PCT ( PCT LT 75 ) LT20                                                                                 | 1/3- DVEN COLE 1/10 1/3-<br>BAR DRY BAR BAR                | 15- WRD LBS/ACRE 1/1<br>8AR CM/<br>PCT CM H20                                                                 | 1/2<br>CACL                                   |
| 000-18 TR 0 0 0 TR 98 TR 018-33 0 0 0 0 0 97 0                                                                                                           |                                                            | 16.0 .20 3.6C 14 6.3<br>11.6 .20 3.1C 23 5.4                                                                  | 5.0                                           |
| 033-46 0 0 0 0 0 96_ 0 _                                                                                                                                 | 1.36 1.41 .012 28.1 25.4<br>1.46 1.53 .016 26.5 24.5       | 8.3 -23 4.6C 23 5.3<br>8.4 -24 3.3C 15 5.3                                                                    | 4.6                                           |
| 066-79 0 0 0 0 95 0                                                                                                                                      | 1.46 1.61 .033 27.3 25.6                                   | 11.2 .21 2.3C 34 5.2<br>16.1 .17 4.6C 63 4.9                                                                  | 4.5                                           |
| 091-114 0 0 0 0 0 95 0                                                                                                                                   | 1.408                                                      | 17.8 101 5.0                                                                                                  | 4.6                                           |
| 152-178 TR 0 0 0 TR 91 TR                                                                                                                                | 1.508                                                      | 16.3 5.8                                                                                                      | 5.4                                           |
| 178-203 TR 0 0 0 TR 82 TR                                                                                                                                | 1.56 1.80 .050 24.1 22.8                                   | 14.014 3.30 5.5                                                                                               |                                               |
| GAIA 681A C/N 6CZA 651A 6NZE 602D<br>ORGN NITG EXT TOTL CA MG<br>CARB FE                                                                                 | 6P2A 6Q2A 6H1A 6G1D<br>NA K SUM BACL KCL<br>EXTB TEA EXT   | EXTB NHAC NHAC CA SAT EXTB                                                                                    | SATT<br>5C1<br>NHAC                           |
|                                                                                                                                                          |                                                            |                                                                                                               | 94                                            |
| 000-18 2.980 .272 11 .8 23.4 4.6 13.7 3.3                                                                                                                | .1 .2 17.3 9.4 TR                                          | 26.7 22.5 1.00 4.2 61 65                                                                                      | 77                                            |
| 033-46 1.01 .079 13 .6 8.7 2.2<br>046-66 .60 .042 14 .5 7.7 2.4                                                                                          | .2 .2 10.5 7.4 .1                                          | 17.9 14.8 .82 3.2 52 59                                                                                       | 71                                            |
| 066-79 .53 .042 13 .6 10.2 3.6<br>079-91 .72 .057 13 .7 14.4 5.5                                                                                         | .4 .3 20.6 10.7 TR                                         | 22.5 19.3 .80 2.8 53 63<br>31.3 28.0 .84 2.6 51 66                                                            | 74                                            |
| 091-114 .89 -7 17.7 6.6<br>114-152 .81 .7 19.4 7.1                                                                                                       | -4 -5 25-2 11-5 -1<br>-4 -5 27-4 9-8                       | 36.7 32.1 .87 2.7 55 69<br>37.2 31.8 .88 2.7 61 74                                                            | 79<br>86                                      |
| 152-178 .65 .7 18.7 6.7<br>178-203 .36 .9 18.7 6.7                                                                                                       | .4 .5 26.3 5.4                                             | 31.7 28.1 .86 2.8 67 83<br>30.7 28.2 .97 2.8 66 86                                                            | 93                                            |
|                                                                                                                                                          |                                                            |                                                                                                               |                                               |
| 8E1 8CIB 8A 5D2 5E 8D5 6F1A<br>REST PH H2O ESP SAR TOTL                                                                                                  | 8AlA 6NIB 601B 6PlA 6Q1A 6                                 | (TRACT 8A1                                                                                                    | EST                                           |
| CM CM PCT PCT PPM PCT                                                                                                                                    | CM ( MEQ /                                                 |                                                                                                               |                                               |
| 000-18<br>018-33<br>03-46                                                                                                                                |                                                            | 32                                                                                                            | 9 -<br>18                                     |
| 046-66<br>066-79                                                                                                                                         |                                                            |                                                                                                               |                                               |
| 079-91<br>091-114 2600 4.6 53.8<br>114-152                                                                                                               | .18                                                        | <u> 19</u>                                                                                                    | <u>28                                    </u> |
| 152-178<br>176-203                                                                                                                                       |                                                            | <u></u>                                                                                                       | 24                                            |
| 000-18 MT3 MT2 KK2 QZ1 COMMENTS - SMECTI                                                                                                                 | S (EST 10-15 PCT). FINE FRACTI                             | D SURFACE. KAGLINITE SMALL TO MODER<br>ON DE SURFACE HORIZON, ASSOCIATED N                                    | 1117                                          |
| 178-203 MT5 KK3 MI1 WITH G MINERAL CODE* MT-HONTMORILLONITE KK-KACLINITE                                                                                 | LYCEROL — PROBABLY BRGAND—CLAY<br>MI—MICA <u>QZ—QUARTZ</u> | STRONG 14A PEAK THAT FAILED TO SOLVA                                                                          |                                               |
| RELATIVE ABUNDANCE* 5-DOMINANT 4-ABUNDANT 3-MO (A) FE-MN NODULES 15-25 PCT. (B) ESTIMATED. (C) MICRO-PENETATION RESISTANCE - A ROD 0.6 CM                | DEA TE SLOW V DUSHED INTO BUILE                            | DENSITY CLOD. FOULLIBRATED AT 1/10-E                                                                          |                                               |
| (C) MICRO-PENETRATION RESISTANCE - A ROD 0.5 CR A DISTANCE OF 0.6 CM USING A POCKET PENETROM STRENGTH.  (D) ORGANIC CARBON IS 17 KG/M SQ TO A DEPTH OF 1 | ETER. UNITS ARE FORCE (KG) AND                             | NOT ESTIMATES OF UNCONFINED COMPRES                                                                           | SIVE                                          |
| (E) IOWA STATE UNIVERSITY DATA. (F) IOWA STATE HIGHWAY COMMISSION DATA.                                                                                  |                                                            | 7                                                                                                             |                                               |

Pedon classification: Argiaquic Argialboll; fine, montmorillonitic, mesic.

Series classification: (Same as pedon) .

Soil: Humeston silty clay loam.

Soil no.: S71-Iowa-93-2 (LSL Nos. 71L1146 - 71L1155).

Location: Wayne County, Iowa, 250 feet north and 100 feet west of the southeast corner of the NE% sec. 31, T. 70 N., R. 22 W., on a nearly level bottom land.

Vegetation and land use: Bluegrass; pasture.

Parent material: Alluvium.

Physiography: On a nearly level, slightly concave slackwater area of first bottom or low second bottom land of Nine-Mile Creek.

Relief: Plane to slightly concave.

Slope: Less than 1 percent.

Drainage: Poorly to very poorly drained.

Erosion: None

Ground water: None within 6 feet (seasonal rainfall below normal).

Permeability: Moderate to moderately slow in the upper part, very slow in the lower part.

Described by: J. D. Highland, L. D. Lockridge, and J. R. Worster; October 1971.

(Colors are for moist soil unless otherwise stated)

All 71L1146 0 to 18 cm (0 to 7 inches). Very dark gray (10YR 3/1) light silty clay loam; weak fine subangular blocky structure parting to weak fine granular; friable; medium acid (pH 5.6); clear smooth boundary.

Al2 71L1147 18 to 33 cm (7 to 13 inches). Very dark gray (10YR 3/1) light silty clay loam; common fine distinct dark brown (7.5YR 3/2) mottles; moderate thin platy structure parting to moderate fine granular; friable; discontinuous gray (10YR 6/1) and light gray (10YR 7/1 dry) silt and fine sand coatings on peds; medium acid; (pH 5.6); clear wavy boundary.

71L1148 33 to 46 cm (13 to 18 inches). Dark gray (10YR 4/1) silt loam; common fine distinct dark brown (7.5YR 3/2) mottles; moderate thin platy structure; friable; discontinuous light gray (10YR 7/1 dry) silt and fine sand coatings on peds; few fine pores; strongly acid (pH 5.4); clear smooth boundary.

A22 71L1149 46 to 66 cm (18 to 26 inches). Dark gray (10YR 4/1) silt loam; few fine distinct dark brown (7.5YR 3/2) mottles; weak medium subangular blocky structure; some horizontal cleavage; friable; nearly continuous light gray (10YR 7/1 dry) silt and fine sand coatings on peds; very strongly acid (pH 5.0); clear wavy boundary.

B&A 71L1150 66 to 79 cm (26 to 31 inches). Very dark gray (10YR 3/1) light silty clay loam; weak medium subangular blocky structure; friable; common nearly continuous light gray (10YR 7/1 dry) silt and fine sand coatings on peds and accumulations in root channels; few dark brown oxides; very strongly acid (pH 4.8); clear wavy boundary.

B21t 71L1151 79 to 91 cm (31 to 36 inches). Very dark gray (10YR 3/1) silty clay loam; weak medium prismatic structure parting to weak fine subangular blocky; firm; thin patchy light gray (10YR 7/1 dry) silt and fine sand coatings on peds which are thicker and more pronounced on the prism faces; common fine dark brown oxide concretions; very strongly acid (pH 4.8); clear smooth boundary.

B22t 7111152 91 to 114 cm (36 to 45 inches). Black (10YR 2/1) heavy silty clay loam; weak medium prismatic structure parting to moderate fine subangular blocky; firm; thin discontinuous clay films; few thin discontinuous light gray (10YR 7/1 dry) silt and fine sand coatings on peds; very strongly acid; gradual smooth boundary.

B23t 71L1153 114 to 152 cm (45 to 60 inches). Black (N 2/) heavy silty clay loam; moderate medium prismatic structure; firm; few thin discontinuous clay films; strongly acid (pH 5.4); gradual smooth boundary.

B31gt 71L1154 152 to 178 cm (60 to 70 inches). Very dark gray (10YR 3/1) silty clay loam; few fine distinct

SOH Kamrar clay loam SOIL Nos. S64Iowa-40-1 LOCATION Hamilton County, Iowa \_. LAB, Nos. <u>19881-</u>19890 April 1968 SOIL SURVEY LABORATORY Lincoln, Nebraska General Methods: 1A, 1Blb, 2Al, 2B Size class and particle diameter (mm) 3A1 Coarse fragments 2A2 Sand 3B2 3B1 2-19 2-19 Very coarse (2-1) Medium Sift fine Very fine Horizon Clay Coarse Int III Depth (1-0 5) |(0.5-0 25)|(0.25-0 1)|(0 1-0.05)|0.05-0 02|(0 02-0 002)|(0 2-0 02)|(2-0 1) (2-0.05) (0 05-8. 0 002) <0.074 (in ) (~ 0 002) (vol.) (wt.) <u>a</u> • Pct of < 19 mm →</p> 28.1 37.6 4.9 10.2 23.4 26.0 7.4 5.4 6.2 14.2 21.9 tr 4.1 A12 37.0 36.6 3.8 21.6 28.7 8-17 26.4 1.0 9.7 7.8 15.4 18.6 78.2 tr 28.4 4.7 4.9 10.2 20,3 11-16 16-23 B1 35.2 36.4 1.5 7.1 14.9 27.7 21.3 75.5 tr 35.8 30.7 4.3 BOL 33.5 1.3 5.7 1.1.5 13.3 20.2 27.5 73.6 tr 9.8 30.4 34.8 23-29 34.1 31.1 4.3 R22 2.1 5.2 12.7 13.1 18.0 24.3 24.8 71.5 tr 29-36 36-41 34.3 34.6 4.7 12.9 18.2 29.8 B23 31.1 2.3 5.1 12.7 9.5 70.9 5 20.9 24.7 5.0 4.7 T&TTB31 34.5 31.8 30.5 30.8 70.9 33.7 2.2 4.5 13.0 9.8 4.5 11.8 25.6 41-50 33.0 27.5 28.4 9.7 13.9 23.3 'n٦ IIB32 39.5 2.3 72.6 12 50-63 63-72 14.8 24.5 4.6 32.3 39.3 2.4 4.6 11.2 9.5 31.0 16 IIB33 26 33.5 22.3 26.8 11.4 10.1 16.7 TŤC 4.7 4 2.1 6Ala 4Dl 6Bla 602a Carbonate Bulk density Water content 14A1b 4Ala 4B2 Ext. 74Blc | 4C1 8с1ъ 801a as CaCOa Organic Nitroger C/N Depth 1/3-to 15-Bar 6Elb 3Ala 1/3-1/3-Air-1/3-15-Sat. Iron carbon (1.1) 6F2a <0.002 Bar Bar Dry COLE Bar Bar Paste as <u>b</u> Fе < 2mm mm ¢ Pct Pct Pet Pct Pet g/co Pct 2.88 0.262 1.40 1.61 0.047 26.0 13.8 6.2 11 0.9 0.17 8-11 2.72 0.230 12 0.9 1.30 1,48 0.044 27.6 | 14.3 | 0.17 5.7 5.7 5.7 11-16 1.0 1.31 1.49 0.044 0.056 25.6 26.4 14.1 0.15 2.30 12 16-23 11 1.0 1.61 14.0 0.17 23~29 0.98 0.100 10 1.0 1.40 1.68 0.064 27.8 13.9 0.19 6.0 29-36 1.0 -(s)1.46 1.68 0.046 22.1 13.8 0.12 6.1 0.52 36-41 0.9 2 1.31 0.045 25.7 13.8 0.16 7.1 7.2 0.37 1.36 41-50 0.20 0.8 16 tr 1,26 1.43 1.61 0.035 24.6 11.7 0.16 7.6 0.6 19 1,27 1.51 1.66 0.027 1.79 0.023 23.0 0.14 7.8 50**-**63 0.13 12,2 0.09 0.7 18 1 1.59 1.66 18.9 11.9 0.11 Extractable bases 5Bla BEL 1881.a 8B1 | 8D5 8D3 6HLa Cat.Exch.Cap. Base saturation 503 5Cl 6N2a 1602a 6P2a 602a Ext. 5A3a 5A1a Resis- Elec. Water Total Deoth Acid-Sum tivity Cond. at. sol Ce/Mg Sum (in ) Na Set . salts in Dettions NHD: OAc Ca Me Sum ity Cations NH4OAc mmhos/ ohmssoil Pet. meg/100 CM. cm DOM. 8.7 28.3 3.5 3.5 36.4 76 98 ი-8 6.0 0.1 0.5 27.7 21.1 25.3 35.2 90 9.9 28.2 72 5.5 0.5 8-11 19.2 0.3 34.4 88 24.7 28.1 0.5 9.7 3.1 72 11-16 18.2 5.9 0.1 8.9 24.2 73 83 92 0.5 33.1 26.2 2.7 16-23 17.2 0.1 29.3 100 24.2 5.1 24.2 16.6 6.9 0.1 23-29 24.2 86 23.1 2.3 105 16.3 0.1 0.6 29-36 7.2 1700 0.64 43.7 410 2.2 36-41 21.7 21.5 14.6d 6.5e 0.1 0.5 0.5 19.3 41-50 0.1 17.4 2.6 13.5d 5.2e 2.8 18.6 18.3 50-63 0.5 16.5 4.7e 0.1 13.3d 2.8 63-72 4.6e 0.5 13.1d 0.1 Ratios to Clay 8D1 a. Carbonate comprises approximately 2 percent of the sand between 36 and 41 inches, and 10 to 20 percent of the sand below 41 inches.  $24 \text{ kg/m}^2$  to 60 inches (Method 6A). Depth NH), OAc Ext. 15-Bar (In) CEC Iron Water Calculated to include volume but not weight of 2-19 mm material (Method 3B2). KC1-TEA extract (Method 6N4b). e. KCl-TEA extract (Method 604b). 0-8 f. Resistivity of fine-and medium-textured soils measured at saturation is 0.83 0.03 0.40 0.39 8-11 similar to that measured at moisture equivalent. Resistivity at satu-0.77 0.02 ration for coarse-textured soils is generally lower than that obtained 0.03 0.39 11-16 9.77 16-23 0.73 0.03 0.39 at moisture equivalent. 23-29 0.70 0.03 0.40 0.67 29-36 36-41 0.40 0.03 0.68 0.03 0.43 41-50 0.03 0.43 0.63 0.43 50-63 63-72 0.580.02 0.60 0.03

Pedon classification: Typic Hapludoll; fine, montmorillonitic, mesic.

Series classification: (Same as pedon). Soil: Kamrar clay loam.

Soil no.; \$64-Towa-40-1 (LSL Nos. 19881 - 19890),
Location: Ramilton County, Lowa; 335 feet east and 260 feet south of the NW corner of the SE% Sec. 27, T. 88 N., R. 25 W

Vagetation and land use: Plowed red clover sod; cropland.

Parent material: About 3 feet of moderately fine to fine textured glacial sediments over glacial till. Slope: About 1 percent slope at the actual site but the site is on a high that has a gradient of 3 percent to the south. Late Wisconsin glacial till plain.

Drainage: Moderate well drained.

Permeability: Moderately slow.

Root distribution: Roots were abundant from 0 to 16 inches, few from 16 to 41 inches with very few below

Described by: R. I. Dideriksen, C. S. Fisher, and M. P. Koppen; September 15, 1964.

(Colors are for moist soil unless otherwise stated)

Ap 19881 0 to 20 cm (0 to 8 inches). Black (10YR 2/1) medium clay loam; black (10YR 2/1) to very dark gray (10YR 3/1) when kneaded; very dark gray (10YR 3/1) to dark gray (10YR 4/1) when dry; cloddy parting to weak fine granular structure; friable; sand grains are distinctly evident; neutral (pH 6.6); abrupt smooth boundary.

A12 19882 20 to 28 cm (8 to 11 inches). Black (10YR 2/1) medium clay loam; very dark gray (10YR 3/1) when kneaded; very dark gray (10YR 3/1) to dark gray (10YR 4/1) when dry; weak fine subangular blocky and fine granular structure; friable; sand grains are evident; alightly acid (pH 6.2); clear smooth boundary.

B1 19883 28 to 40 cm (11 to 16 inches). Very dark gray (10YR 3/1) heavy clay loam; the same color when kneaded; moderate very fine subangular blocky structure; friable; distinct clean sand grains are evident; slightly acid (pH 6.4); gradual smooth boundary.

B21 19884 40 to 68 cm (16 to 23 inches). Very dark grayish brown (10YR 3/2) faces of peds are about 70 percent very dark gray (10YR 3/1) and about 30 percent very dark grayish brown (10YR 3/2); heavy clay loam; moderate fine and very fine subangular blocky structure; friable to firm; a few brown (10YR 4/3) peds in the lower part; the sand grains are coated; a few fine pores and many root channels; few small pebbles about & inch in diameter; slightly scid (pH 6.4); clear smooth boundary.

B22 19885 68 to 73 cm (23 to 29 inches). Brown (10YR 4/3) heavy clay loam; faces of peds very dark grayish beown (10YR 3/2) with about 20 percent very dark gray (10YR 3/1); moderate fine and very fine subangular blocky structure; friable to firm; few fine pores and many root channels; very few very fine atrong brown soft oxides; a rotten stone is present; slightly acid (pH 6.2); clear smooth boundary.

B23 19886 73 to 90 cm (29 to 36 inches). Brown (10YR 4/3) with some dark yellowish brown (10YR 4/4) medium clay loam; faces of peds dark grayish brown (10YR 4/2) and brown (10YR 4/3); very few very fine strong brown (7.5TR 5/6) mottles; weak fine prismatic structure parting to moderately fine subangular blocky; firm; thin discontinuous dark grayish brown (10YR 4/2) clay films on vertical faces; very few yellowish red oxides; some 1-inch diameter pebbles; slightly acid (pH 6.2); clear smooth boundary.

TATIB31 19887 90 to 105 cm (36 to 41 inches). Yellowish brown (10YK 5/4) and brown (10YK 4/3) medium clay loam; faces of peds brown (10YK 4/3) with some dark grayish brown (10YK 4/2); few fine gray (5Y 5/1) mottles and very few strong brown (7.5YK 5/6 and 5/8) mottles; very weak fine prismatic structure parting to weak fine and medium subangular blocky; thin discontinuous dark grayish brown (10YR 4/2) clay films on some vertical faces; very few soft red oxides; a few 1/2 to 1-inch dismeter pebbles; mildly alkaline (pH 5.6); noncalcarsous; clear wavy boundary.

IIB32 19888 105 to 128 cm (41 to 50 inches). Yellowish brown (10YR 5/4) clay losm; common fine gray (5Y 5/1) mottles; weak medium subangular blocky structure with some vertical cleavage; friable; a few lime-coated vartical faces are grayish brown (2.5Y 5/2); many very fine black oxides; few strong brown and yellowish red soft oxides; common pebbles and few stones; a few wormholes; moderately alkaline (pH 8.0); clear wavy boundary.

128 to 160 cm (50 to 63 inches). Mottled yellowish brown (10YR 5/4) and gray (5Y 5/1) clay losm; very weak medium subangular blocky structure; friable; distinct lime-coated vertical faces of gray to light gray (5Y 6/1) and many soft concretions and coats in pores; a few %-inch clay balle; common very fine black oxides; many fine pores; moderately alkaline (pH 8.2+); calcareous; clear wavy boundary.

IIC 19890 160 to 183 cm (63 to 72 inches). Mottles yellowish brown (10YR 5/4) and 30 percent gray (5Y 5/1) heavy loam; massive; friable; many black oxides; less segregated lime than in the horizon above; some stones and pabbles; moderately alkaline (pH 8.2+); calcareous.

Remarks: From 41 to 72 inches there were common vertical rootholess and voids up to \(^1\_4\) inch in diameter. The site appears to have a transitional horizon at 36 to 41 inches between materials I and II.

Penetrometer readings were made by using a Soiltest penetrometer with a 5/16-inch head. The penetrometer was pushed horizontally into the freshly exposed wall of the sampling pit to a depth of 5 inches. Three readings were obtained at each vertical depth as follows (all measurements in pounds): at 13 inches-53, 58, 57; at 20 inches--80, 80, 79; at 25 inches--98, 115, 116; at 31 inches--101, 103; and at 46 inches--72, 74, 65.

Soil temperatures were taken by inserting a Weston dial thermometer into the wall of the sampling pit. The depths and temperatures are as follows: 20 inches--16.7° C., 30 inches--16.5° C., 40 inches--16.2° C., 80 inches--14.2° C.

2-Kamrar clay loam

Micromorphology (Method 4E1) and Mineralogy (Method 7B). Clay films are not apparent on peds from the B22 horizon examined under a stereoscopic microscope. In thin section, a few, thin, oriented clay bodies that might be interpreted as clay films occur on the macrostructural surfaces. The very fine sand consists of might be interpreted as clay films occur on the macrostructural surfaces. The very fine sand consists of 63 percent quartz, 21 percent feldsper, and 8 percent ferrogagnesian minerals. Orthoclase is the principal of percent quartz, it percent relapser, and o percent terrogagneoidu manatais. Otthociase to the principal feldspar. Microcline and sodic plagioclase were identified. Accessory minerals include hornblende, weathered biotite(?), hypersthane, tourmaline, epidote (clinozofsite), compound grains, zircon, kaolinite, and opaques. The very fine sands of the IIC horizon contain 10 to 15 percent carbonate; otherwise they are similar to very fine sands of the B22 in composition and in degree of weathering.

SOIL Nos. 864 Iowa-40-2 LOCATION Hamilton County, Iowa

SOIL SURVEY LABORATORY Lincoln, Nebraska

LAB. Nos. 19891-19899 April 1968

| General | Methods: | lA. | lBlb. | 2Al. | 2E |
|---------|----------|-----|-------|------|----|

|                                          | L Methods                            | [                                    | TRID,                                |                                      | - 0                                   |                                  |                                      | Size clas                            | s and part                      | cle diamete                               | er (mm)                              | RAI                                  |                                      |                                      |                                 |                      |                            |                      |
|------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|----------------------------------|--------------------------------------|--------------------------------------|---------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|----------------------|----------------------------|----------------------|
|                                          |                                      |                                      | Total                                |                                      | L                                     |                                  |                                      | Sand                                 |                                 | Sir                                       |                                      | ]                                    |                                      |                                      |                                 | Coa                  | erse fragme                | nts 2A               |
| Depth<br>(in.)                           | Ногізоп                              | Sand<br>(2-0.05)<br>8                | Silt<br>(0 05–<br>0 002)             | Clay<br>( < 0 002)                   | Very<br>coarse<br>(2-1)               |                                  | Medium<br>(0.5–0 25)                 | Fine<br>(0 25-0 1)                   | Very fine<br>(0 1–0 05)         | 0 05-0 02                                 | Int III<br>(0.02-<br>0.002)          | Int. II<br>(0.2–0.02)                | (2-0 1)                              | <0.071+                              |                                 | 3B2<br>2-19<br>(Vol. | 381                        |                      |
| 0-7<br>7-14<br>14-22<br>22-27<br>27-32   | All<br>Al2<br>Bl<br>B21<br>B22       | 30.4<br>28.6<br>31.0<br>34.2<br>34.1 | 36.4<br>34.8<br>32.3<br>30.3<br>30.8 | 33.2<br>36.6<br>36.7<br>35.5<br>35.1 | 1.4<br>2.9<br>3.9<br>5.0<br>2.9       | 5.4<br>5.3<br>5.5<br>5.8<br>5.4  | 5.9<br>5.1<br>5.2<br>5.5<br>5.6      | 11.0<br>9.3<br>10.1<br>10.8<br>12.1  | 6.7<br>6.0<br>6.3<br>7.1<br>8.1 | 15.2<br>13.8<br>13.9<br>12.6              | 21.0<br>18.9<br>17.7<br>19.0         | 27.9<br>24.8<br>25.2<br>25.7<br>26.6 | 23.7<br>22.6<br>24.7<br>27.1<br>26.0 | 73.3<br>74.6<br>72.5<br>69.9<br>70.4 |                                 | 9                    | 4<br><u>tr</u><br>17       |                      |
| 32-39<br>39-50<br>50-62<br>62-72         | B23<br>IIB31<br>IIB32<br>IIC         | 35.5<br>34.6<br>35.4<br>36.1         | 29.1<br>36.6<br>36.3<br>35.8         | 35.4<br>28.8<br>28.3<br>28.1         | 3.4<br>3.6<br>2.5                     | 5.9<br>5.2<br>5.3<br>5.4         | 5.9<br>5.4<br>5.5<br>5.9             | 12.2<br>11.5<br>11.9<br>12.7         | 8.4<br>9.1<br>9.1<br>9.6        | 10.6<br>12.9<br>13.6<br>13.0              | 18.5<br>23.7<br>22.7<br>22.8         | 25.8<br>28.5<br>29.4<br>29.8         | 27.1<br>25.5<br>26.3<br>26.5         | 69.2<br>70.8<br>69.9<br>69.5         |                                 | 9 9                  | 15<br>15<br>14<br>14       |                      |
|                                          | 6Ala                                 | <u> </u>                             |                                      |                                      | Carbo                                 | nate                             | <u> </u><br>                         | Bulk densit                          | <u> </u>                        | <br>  4D1                                 | W                                    | ater conte                           | nt :                                 |                                      | -                               |                      | pH                         |                      |
| Depth<br>(In )                           | Organic<br>carbon<br><u>b</u><br>Pct | Nitrogen<br>Pct                      | C/N                                  | Ext.<br>Iron<br>as<br>Fe<br>Pct.     | as Ca<br>6E1b<br>6E2a<br>< 2mm<br>Pct | 3Ala<br><0.002<br>mm<br>Pct.     | 1/3-<br>Bar<br><u>c</u>              | 4A1d<br>1/3-<br>Bar                  | 4Alb<br>Air-<br>Dry             | CO1/H                                     | 481c<br>1/3-<br>Ber<br>Pot           | 482<br>15-<br>Bar<br>Pet,            | 401<br>1/3- tc<br>15-Bar<br>in√in.   |                                      |                                 |                      |                            | 8C                   |
| 0-7<br>7-14<br>14-22<br>22-27<br>27-32   | 2.90<br>2.09<br>1.46<br>0.70<br>0.55 | 701                                  |                                      |                                      | 760                                   | 100                              | 1.22                                 | 1.25<br>1.31<br>1.36<br>1.34<br>1.38 | 1.40<br>1.49<br>1.61<br>1.61    | 7.040<br>9.044<br>9.059<br>9.058<br>9.064 | 26.6<br>27.8<br>26.5<br>26.6<br>25.4 | 13.9<br>14.4<br>13.6<br>13.6         | 0.16<br>0.18<br>0.18<br>0.18         | -                                    |                                 |                      |                            | 5.<br>5.<br>6.       |
| 32-39<br>39-50<br>50-62<br>62-72         | 0.38<br>0.14<br>0.11<br>0.08         |                                      |                                      |                                      | 18<br>18<br>18                        |                                  | 1.24<br>1.37<br>1.47<br>1.47         | 1.35<br>1.50<br>1.62<br>1.62         | 1.77                            | 0.063<br>0.036<br>0.025<br>0.033          | 26.7<br>21.5<br>19.4<br>19.8         | 14.0<br>12.2<br>11.9                 | 0.16<br>0.13<br>0.11<br>0.12         |                                      |                                 |                      |                            | 6.<br>7.<br>7.<br>7. |
|                                          |                                      | Extractab                            | ie bases                             | 5Bla                                 |                                       | 6H1a                             | Cat.Ex                               | ch.Cap                               |                                 |                                           |                                      |                                      |                                      |                                      | 8 <sub>D3</sub>                 |                      | Base sat                   | uration              |
| Depth<br>(In )                           | 6N2a<br>ca                           | 602a<br>Mg                           | 6P2a<br>Na                           | 692а<br>к                            | Sum                                   | Ext.<br>Acid-<br>ity             | 5A3a<br>Sum<br>Centions              | 5А1а<br>МНЦОАс                       |                                 |                                           |                                      |                                      |                                      |                                      | Ca/Mg                           |                      | 503<br>Sum<br>Cations      | <b>№</b> 40          |
| 0-7                                      | 15.7                                 | 5.6                                  | tr                                   | 0,8                                  | meg/100 g<br>22.1                     | 10.7                             | 32.8                                 | 27.1                                 |                                 |                                           |                                      |                                      |                                      |                                      | 2,8                             |                      | Pct<br>67                  | Pct<br>8             |
| 7-14<br>14-22<br>22-27<br>27-32<br>32-39 | 16.2<br>16.1<br>15.9<br>16.3<br>16.5 | 6.5<br>7.2<br>8.0<br>8.1<br>8.0      | 0.1<br>0.1<br>0.1<br>0.1             | 0.5<br>0.6<br>0.6<br>0.6<br>0.6      | 23.3<br>24.0<br>24.6<br>25.1<br>25.2  | 10.2<br>8.7<br>5.4<br>4.3<br>2.8 | 33.5<br>32.7<br>30.0<br>29.4<br>28.0 | 26.5<br>25.9<br>24.6<br>24.7<br>23.0 |                                 |                                           |                                      |                                      | ,                                    |                                      | 2.5<br>2.2<br>2.0<br>2.0<br>2.1 |                      | 70<br>73<br>82<br>85<br>90 | 10<br>10<br>11       |
| 39-50<br>50-62<br><u>62-72</u>           | 13.4d<br>12.7d<br>12.5d              | 5.2e<br>5.1e<br>4.9e                 | 0.1<br>0.1<br>0.1                    | 0.5<br>0.5<br>0.5                    | 19.2<br>18.4<br>18.0                  |                                  | ı                                    | 17.4<br>16.7<br>16.1                 |                                 |                                           |                                      |                                      |                                      |                                      | 2.6<br>2.5<br>2.6               |                      |                            |                      |
|                                          |                                      |                                      |                                      |                                      |                                       |                                  |                                      |                                      |                                 |                                           |                                      |                                      |                                      |                                      |                                 |                      |                            |                      |

|                | Ratios                     | to Cla | 7 8D1           |                                     | _ [                                        |
|----------------|----------------------------|--------|-----------------|-------------------------------------|--------------------------------------------|
| Depth<br>(In ) | NH <sub>L</sub> OAc<br>CEC |        | 15-Bar<br>Water | Atter<br>4F1<br>Lqid<br>Lmit<br>Pot | berg <sup>1</sup> /<br>4F2<br>Plst<br>Indx |
| 0-7            | 0.82                       |        | 0.42            | 48                                  | 21                                         |
| 7-14           | 0.72                       |        | 0.39            |                                     |                                            |
| 14-22          | 0.71                       |        | 0.37            |                                     |                                            |
| 22-27          | 0.69                       |        | 0.38            | 47                                  | 25                                         |
| 27-32          | 0.70                       |        | 0.38            |                                     | ·                                          |
| 32-39          | 0.65                       |        | 0.40            | _                                   | Į                                          |
| 39-50          | 0.60                       |        | 0.42            |                                     |                                            |
| 50-62          | 0.59                       |        | 0.42            |                                     |                                            |
| 62-72          | 0.57                       |        | 0.42            | 39                                  | 23                                         |
|                |                            |        |                 | _                                   |                                            |

a. Carbonate comprises 10 to 20 percent of the sand below 39 inches.
b. 19 kg/m² to 60 inches (Method 6A).
c. Calculated to include volume but not weight of 2-19 mm material (Method 3B2).
d. KC1-TEA extract (Method 6N4b).
e. KC1-TEA extract (Method 6O4b).
f. Iowa State Highway Commission data.

Pedon classification: Typic Hapludoll; fine, montmorillonitic, mesic.

Series classification: (Same as pedon).

Soil: Kamrar clay loam .

Soil no.: S64-Iowa-40-2 (LSL Nos. 19891 - 19899).

Location: Hamilton County, Iowa; 523 feet east and 1,022 feet north of the SW corner of Sec. 25, T. 88 N.,

R. 25 W.

Vegetation and land use: Bluegrass; pasture.

Parent material: About 3 feet of moderately fine to fine textured glacial sediments over glacial till. Slope: 2 percent SE facing slope; the site is near a 12 percent sideslope above a drainageway. Undulating

Late Wisconsin till plain.

Drainage: Moderately well drained. Permeability: Moderately slow.

Root distribution: Not determined.

Described by: R. I. Dideriksen, C. S. Fisher and M. P. Koppen, Sentember 16, 1964.

(Colors are for moist soil unless otherwise stated)

All 19891 0 to 18 cm (0 to 7 inches). Black (10YR 2/1) medium clay loam; the color is the same when kneaded; dark gray (10YR 4/1) when dry; moderate very fine subangular blocky and fine granular structure; friable; evident clean sand grains; medium acid (pH 5.9); gradual smooth boundary.

A12 19892 18 to 35 cm (7 to 14 inches). Black (10YR 2/1) medium clay loam; the color is the same when kneaded; dark gray (10YR 4/1) to dark gray1sh brown (10YR 4/2) when dry; moderate very fine and fine subangular blocky with very little fine granular structure; friable; clean sand grains on the peds and some 1/8-inch pebbles; medium acid (pH 6.0); gradual smooth boundary.

B1 19893 35 to 55 cm (14 to 22 inches). Very dark grayish brown (10YR 3/2) medium clay loam; faces of peds very dark gray (10YR 3/1) and very dark grayish brown (10YR 3/2); a few brown (10YR 4/3) peds in the lower part; very dark grayish brown (10YR 3/2) when kneaded; moderate very fine and fine subangular blocky structure; some very thin discontinuous clay films on a few peds; very few very fine soft yellowish brown oxides; a weak, wavy pebble band in the lower part with pebbles 1-to-1 inch in diameter; medium acid (pH 6.0); clear smooth boundary.

B21 19894 55 to 78 cm (22 to 27 inches). Brown (10YR 4/3) heavy clay loam; faces of peds dark grayish brown (10YR 4/2) with about 20 percent very dark gray (10YR 3/1) moderate very fine and fine subangular blocky structure; friable when moist; slightly sticky when wet; a few thin discontinuous clay films; a few very dark gray (10YR 3/1) fills in pores; many fine and a few medium inped tubular pores; a few strong brown and yellowish brown oxides; slightly acid (pH 6.1); clear smooth boundary.

B22 19895 78 to 80 cm (27 to 32 inches). Dark yellowish brown (10YR 4/4) to yellowish brown (10YR 5/4) heavy clay loam; faces of peds brown (10YR 4/3) and dark grayish brown (10YR 4/2); weak fine and moderate very fine subangular blocky structure; friable when moist; slightly sticky when wet; thin discontinuous clay films on the very fine peds; some very dark gray (10VR 3/1) fills in pores and voids; common very fine soft strong brown oxides; slightly acid (pH 6.1); clear smooth boundary.

80 to 100 cm (32 to 39 inches). Yellowish brown (10YR 5/4) to light olive brown (2.5Y 5/4) medium clay loam; faces of peds brown (10YR 4/3); few fine olive gray (5Y 5/2) mottles; thin discontinuous clay films on a few peds; a few small gray (5Y 4/1) clay accumulations; common fine tubular pores; common fine yellowish brown and yellowish red soft oxides; few pebbles. This horizon is the contact to a layer with accumulations of lime rocks and increased number of pebbles; mildly alkaline (pH 7.8); clear wavy boundary.

IIB31 19897 106 to 128 cm (39 to 50 inches). Yellowish brown (10YR 5/4) with about 20 percent yellowish brown (10YR 5/6) and 30 percent light olive gray (5Y 6/2); light clay loam; weak medium subangular blocky structure; friable; common fine strong brown soft oxides; a few fine black soft oxides; common fine inped tubular pores; some pebbles and lime rocks; some vertical faces coated with lime; moderately alkaline (pH 8.4+); strongly effervescent; gradual smooth boundary.

IIB32 19898 128 to 158 cm (50 to 62 inches). Mottled yellowish brown (10YR 5/4 and 5/6) and light olive gray (5Y 6/2) light clay loam; very weak medium subangular blocky structure; friable; common very fine inped tubular pores; few fine strong brown and yellowish red soft oxides; few very fine black soft oxides; one large stone in the pit and common pebbles; a few shale fragments; some lime oriented on ped faces and in pores; moderately alkaline (pH 8.4); strongly effervescent; gradual smooth boundary.

IIC 19899 158 to 183 cm (62 to 72 inches). Yellowish brown (10YR 5/6) light clay loam; common to many light olive gray (5Y 6/2) mottles oriented around cleavage faces; massive; oxides are the same as in the horizon above; moderately alkaline (pH 8.4); strongly effervescent.

Remarks: There were no krotovinas in the pit. There is some evidence for a discontinuity at 22 inches. There is a weak stone line at this depth and the material below is noticeably higher in clay.

Penetrometer readings were made by using a Soiltest penetrometer with a 5/16-inch head. The penetrometer was pushed horizontally into the freshly exposed wall of the sampling pit to a depth of 5 inches. Three readings were obtained at each vertical depth as follows (all measurements in pounds): at 5 inches-73, 65, 65; at 10 inches-55, 59, 58; at 18 inches-64, 65, 85; at 24 inches-64, 74, 76; at 29 inches-57, 55, 58; at 34 inches-40, 50, 48; at 42 inches-62, 58, 65; and at 57 inches-63, 61, 58.

Soil temperatures were taken by inserting a Weston dial thermometer into the wall of the sampling pit. The depths and temperatures are as follows: 20 inches--15.1° C., 30 inches--14.9° C., 40 inches--14.5° C., 80 inches--12.3° C.

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABBRATORY LINCOLN, NEBRASKA

SOIL NO - - - - - 5701A-67-2

GENERAL METHODS - - - 1A, 1818, 2A1, 28

COUNTY - - + MONONA

SAMPLE NOS. 7011135-7011142

NOVEMBER 1975

| WENEKA L                     | ME   MU                   | us           | -1A,1E      | IB,ZA        | 1.58     |                    |              | SAMP          | LE NOS.            | . /OL 1      | 135-701      | 1142            |                   | -                 |              | , 13/3       |             |                 |                        |
|------------------------------|---------------------------|--------------|-------------|--------------|----------|--------------------|--------------|---------------|--------------------|--------------|--------------|-----------------|-------------------|-------------------|--------------|--------------|-------------|-----------------|------------------------|
| DEPTH                        | HORI                      | <br>70N      | (- ~ -      |              |          |                    |              |               | .E S178            | E ANAL       | YSTS. 1      | T 288           | . 341.            | 3414-             | 3A1A         |              |             |                 | LOAT IO                |
|                              |                           |              |             |              |          | FINE               | (            |               | SAND -             |              | )            | (               | -SILT-            |                   | FAML         | INTR         | FINE        | NDN-            | 8D1                    |
|                              |                           |              | SAND<br>2-  |              | CLAY     | CLAY<br>LT         | vcos         | CORS<br>1-    | MEDS<br>•5-        | FNES<br>-25- | -10-         |                 | FNS I             |                   | TEXT<br>SAND |              | CLAY        | CO3~            |                        |
|                              |                           |              | .05         |              | .002     |                    |              | .5            | •25                | .10          | .05          | .02             | .002              |                   | 21           |              | CLAY        | OLMY            | 10                     |
| G#-                          |                           |              | 4           |              |          |                    |              |               | PC1                | F LT 21      | 44 – –       |                 |                   |                   |              |              | ) PCT       | PCT             | CLAY                   |
| 000-19                       | Aρ                        |              | 22.5        | 57.9         | 19.6     | 12.3               | .0           | .1            | .1                 | 1.9          | 20.4         | 38.8            | 19.1              | 3.0               | 2.1          | 60.9         | 63          | 20              | -49                    |
| 019-36                       | A12                       |              | 24.8        | 56.0         | 19.2     | 12.4               | TR           | - 1           | - 5                | 2.2          | 22.3         | 38.2            | 17.8              | 2.5               | 2.5          | 62.4         | 65          | 19              | .50                    |
| <del>036-5</del> 5<br>055-80 | B2<br>B3                  |              | 28.2        | 54.8<br>54.2 |          |                    | TR .1        | •1            | •3                 | 2.4          | 25.4<br>29.0 | 37.6<br>37.3    |                   | 1.8<br>2.4        | 2.8          |              |             |                 | - <del>51</del><br>-54 |
| 060-112                      | Ç.                        |              |             | 61.8         |          |                    | :0           | :i            | .3                 | 1.6          | 23.0         | 40.6            |                   | 3.1               | 2.0          |              |             | ii              |                        |
| 112-139                      |                           |              | 14.7        | 71.1         | 14.2     |                    | •1           | •1            | • 2                | - 8          | 13.5         | 42.5            |                   | 3.5               | 1.2          | 56.6         |             |                 | .56                    |
| 139-160<br>160-190           | C3<br>C4                  |              | 10.2<br>4.0 | 75.2<br>78.4 |          |                    | .1           | .1            | •2                 | .7           | 9.1<br>3.2   | 49.4            |                   | 2.9<br>3.7        | 1+1          |              |             | 15<br>18        |                        |
|                              |                           |              |             | _ <b></b>    |          |                    |              |               |                    |              |              |                 |                   |                   |              |              |             |                 |                        |
| DEPTH                        |                           |              |             |              |          | 3B, 381            |              |               |                    |              |              | - ~WAT<br>4BlC  |                   | STENT-            |              | CARB<br>6E18 |             |                 | H)                     |
|                              | GT.                       | GT           |             | 20-5         |          | LT                 |              | 1/3-          | OVEN               |              | 1/10         | 1/3-            |                   | WRD               |              | LT           | LT          | 1/1             | 1/2                    |
| GM                           | 2<br>PC F                 | 75<br>PGT    | <i></i>     | OCT.         | IT 76    | 074<br>1           |              | BAR           | DRY<br>G/CC        |              | BAR<br>PCT   | BAR<br>PCT      | BAR<br>PCT        | CM/               |              | 2<br>PCT     | -002<br>PCT | H20             | CACL                   |
|                              |                           |              | *           |              |          |                    |              | 9/66          |                    |              |              |                 |                   |                   |              |              |             |                 |                        |
| 014-36<br>000-19             | Çi<br>O                   | 0            | 0           | 0            | 0        | 93<br>93           |              | 1.31          | 1.41               |              | 29.4<br>31.6 | 26.0<br>24.9    |                   | •22<br>•20        | 1.9B<br>1.6B |              |             | 5.2<br>5.8      |                        |
| 036~55                       | ä                         | . 0          | ŏ           | ŏ            | ŏ        | 91                 |              | 1.23          | 1.31               | .021         | 29.1         | 26.3            |                   | .22               | 1.98         |              |             | 7.5             |                        |
| 055-80                       | U                         | 0            | O           | 0            | 0        | 91                 | 0            | 1.20A         |                    |              |              |                 | 7.8               |                   |              | 6            | -           | 7.9             | 7.7                    |
| 080-112<br>112-139           | TK<br>TR                  | 0            | 0           | TR<br>1R     | TR<br>TR | 93<br>97           |              | 1.23<br>1.30A | 1.31               | .022         | 30.4         | 23,4            | 7.1               | -20               | 0.98         | 10           |             | 8.0             |                        |
| 139-160                      | T 18                      | ō            | Q           | TR           | TR       | 97                 | TR           | 1.32          | 1.37               | .013         | 35.2         |                 | 7.4               | -29               | 1.48         |              | Ō           | 8.4             | 8.0                    |
| 160-190                      | ťR                        | 0            | 0           | TR           | TR       | 98                 | TR           | 1.30          | 1.36               | .016         | 35.4         | 31.6            | 9.4               | •29               | 1.68         | 7            | 0           | 8.4             | 8.0                    |
|                              |                           |              |             |              | 0400     | (EX                | TDACT        | ARIG D.       |                    |              | ACTY         | AL              |                   | EXCHI             | PATIO        |              | CA          | 1845            | E SATI                 |
| DEPTH (                      | 6AIA                      |              |             | 6CZA         |          | 6N2E               |              |               |                    |              | AIH6         | 6G I D          |                   |                   | 801          | 8D3          | 5F          | 5C 3            | 5C1                    |
|                              | DRGN                      | NITG         |             | £ΧΤ          | TOTL     | CA                 | MG           | NA            | K                  | SUM          | BACL         | KCL             | EXTB              | NHAC              | NHAC         |              | SAT         | EXTB            | NHÁC                   |
| CM                           | CARB<br>PCT               | PCT          |             | FE<br>PCT    | PCT      | (                  |              |               | MEC                | EXT8         | TEA<br>) G   | EXT             | ACTY              | 1                 | TO<br>CLAY   | TO<br>MG     | NHAC<br>PCT | ACTY<br>PCT     | PCT                    |
|                              |                           |              |             |              |          |                    |              |               |                    |              |              |                 |                   |                   |              |              |             |                 |                        |
| 000-19<br>019-36             | 1.810                     | -168<br>-144 |             | 8.<br>8.     |          | 13.2               | 3.0          | •2<br>•2      | .9<br>.5           | 17.3<br>18.8 | 7.6<br>5.1   | -1              | 24.9              | 20.2<br>19.8      |              |              |             | 69.<br>79       |                        |
| 036-55                       | 1.01                      | .097         |             | -8           |          | 15.00              | 3.00         | .2            | .4                 | 18.6         |              |                 |                   | 18.2              |              |              |             |                 |                        |
| 055-80                       | .60                       | .065         | 9           | • 8          |          | 18.00              | 2.70         | • 2           | -4                 | 21.3         |              |                 |                   | 12.7              | -88          |              |             |                 |                        |
| 086-112                      |                           |              |             | .8           |          | 15.7D              | 4.00<br>7.40 | •2            | .6                 | 20.3         |              |                 |                   | 10.5              | .80<br>.85   |              |             |                 |                        |
| 112-139<br>139-160           | .23                       |              |             | .8           |          | 12.4D              | 6 9D         | .6            | .7                 | 22.6         |              |                 |                   | 12.2              | .84          |              |             |                 |                        |
| 160-190                      |                           |              |             | •6           |          | 11.70              | 11.D         | 1.0           | 1.1                | 25.2         |              |                 |                   | 15.6              | .89          |              |             |                 |                        |
|                              |                           |              |             |              |          |                    |              |               |                    |              | CATHO        |                 | EXTRACT           |                   |              |              |             | ATTER           | REDC                   |
| DEPTH                        | (SATUR:                   |              |             | NA<br>502    | NA<br>5E | SALT<br>8D5        | GYP<br>6Fla  |               |                    |              |              |                 | 6IIA              |                   |              |              |             | 4F1             |                        |
|                              |                           | РН           | H20         | Q23          | 2 A R    | TOTL               |              | EC.           | CA                 | MG           | NΔ           | K               | C 0 3             | HC O3             | CL           | S04          | NC3         |                 | INDX                   |
| CM                           | GHW-                      |              | PCT         | PCT          |          | SDLU<br>PPM        | PCT          | MHOSZ<br>CM   |                    |              |              | HEQ             | / LITER           | t <b>-</b>        |              |              |             |                 | INDA                   |
| 000~19                       |                           |              |             |              |          |                    |              |               |                    |              |              |                 | ~                 |                   |              |              |             | 32E             | 9                      |
| 019-36                       |                           |              |             |              |          |                    |              |               |                    |              |              |                 |                   |                   |              |              |             |                 |                        |
| 036~55                       |                           |              |             |              |          |                    |              |               |                    |              |              |                 |                   |                   |              |              |             | 31E<br>30E      | 7                      |
| 055-80<br>080-112            | 1700                      | 7.6          | 39.2        | 2            |          | 380                |              | 1.41          | 8.8                | 5.3          | .7           | .4              |                   |                   |              |              |             | 306             | •                      |
| 112-139                      |                           |              |             | _            |          |                    |              |               |                    |              |              |                 |                   |                   |              |              |             | 30E             | 4                      |
| 139-160<br>160-190           |                           |              |             |              |          |                    |              |               |                    |              |              |                 |                   |                   |              |              |             |                 |                        |
|                              |                           |              |             |              |          |                    |              |               |                    |              |              |                 |                   |                   |              |              |             |                 |                        |
| MECROMO                      | RPHOLO                    | SY (4E       | 1).         |              |          |                    |              |               |                    |              |              |                 |                   |                   |              |              |             |                 |                        |
| 36-55                        | CM B                      | 2 UNI        | FORM F      | ABRIC        | MILH.    | WEAK OR<br>DOISH-8 | LIENTA       | TION O        | CECTME             | AND NE       | O CLAY       | FILMS<br>O Peto | . PATC<br>F PLASI | HY, THE           | FIN UR       | TENIED       | TER ID      | GUATIN<br>NG AS | GS UN<br>Fill-         |
| I No.23                      | S RETH                    | EEN SK       | ELETAL      | GRAI         | UNA 2N   | AS PAT             | CHY C        | DATING:       | S ON LA            | ARGER (      | GRAINS.      | , MIC           | A-LIKE            | GRAINS            | .05-         | _1 MM        | ARE CO      | MMON T          | HAT                    |
| RAN                          | 6E-WID(                   | ELY IN       | ALTER       | ATTON        | . EAR    | THY BLA            | CK TO        | DARK          | REDDISI            | I-BROW       | 4 BOD16      | \$ .02          | 1 MM              | ACROSS            | ARE          | VERY C       | OMMON.      |                 |                        |
| 55-80                        | CM B:                     | A MAJ        | OR DIF      | FEREN        | ÇE FRO   | M B2 IS<br>Regular | PRES         | NCE O         | F FINE-<br>1 MM AT | GRAIN        | CARBUN       | IATE W          | HICH IS           | UNIF              | JK ML Y      | DIZIKI       | BOLED       | TH LIM          | CUN-                   |
|                              | 90 CM                     | C4 V         | ERY SI      | MILAR        | 10 83    | BUT WI             |              |               |                    |              | NATE.        |                 |                   |                   |              |              |             |                 |                        |
| DEPTH                        |                           |              | 11 -        | (A) E        | STEMAT   | EG.<br>Enetrat     | TON P        | ESTSTA        | VCE - 4            | s eno d      | No A.C       | DIA I           | S SLOW            | Y PUSE            | IED IN       | TO BUI       | K DENS      | ITY CL          | 00.                    |
| DEFIR                        | ABLE                      | , A8         | LE          | €            | QUILIB   | RATED A            | 11 11        | )-BAR,        | A DIST             | IANCE (      | JF 0.6       | CM US           | ING A             | OCKET             | PENET        | ROMETE       | R. UN       | ITS AR          | E                      |
| -6#- I                       | P<br>L85∷ <del>PE</del> 4 | R ACRE       |             | (C) 0        | RGANIC   | DNA (DX<br>406743  | 1 15 1       | 3 KG/M        | 50 TO              | A DEP        |              |                 |                   | HENG              |              |              |             |                 |                        |
| 000-18                       | 56                        | 47           |             | (D) M        | ETHODS   | 6N4C F             | OR CA        | AND 61        | DAC FOR<br>DA-SCS. | R MG.        | ILN. NE      | . но            | RIZON S           | 55 <b>-</b> 80- ( | M BY         | IOWA S       | TATE H      | WY COM          | м.                     |
| 018-36                       | 5                         |              | 2           | A            | MES. I   | Α                  |              |               |                    |              |              |                 |                   |                   | .,           |              | ,,,,,       |                 |                        |
| 036-46                       | 3                         | 9            | 4           | (F) B        | A 201F   | 1887-14            | IG LAB       | , IOWA        | STATE              | UNIV,        | AMES,        | 1 A -           |                   |                   |              |              |             |                 |                        |
| 046-56                       | 3                         |              | 3           |              |          |                    |              |               |                    |              |              |                 |                   |                   |              |              |             |                 |                        |
| 056~69<br>069~81             | 1 2                       |              | 1           |              |          |                    |              |               |                    |              |              |                 |                   |                   |              |              |             |                 |                        |
| 081-97                       | ž                         |              | 15          |              |          |                    |              |               |                    |              |              |                 |                   |                   |              |              |             |                 |                        |
| 097-114                      | 2                         | 12           | 5           |              |          |                    |              |               |                    |              |              |                 |                   |                   |              |              |             |                 |                        |
| <del>114-12</del> 7          |                           |              |             |              |          |                    |              |               |                    |              |              |                 |                   |                   |              |              |             |                 |                        |
|                              |                           |              | 4           |              |          |                    |              |               |                    |              |              |                 |                   |                   |              |              |             |                 |                        |
| 127-140<br>140-152           | 2                         | 16           | 5           |              |          |                    |              |               |                    |              |              |                 |                   |                   |              |              |             |                 |                        |

Pedon classification: Typic Hapludoll; coarse-silty, mixed, mesic. Series classification: Typic Hapludoll; fine-silty, mixed, mesic. 1/

Soil: Keg silt loam.

Soil no.: \$70-Iowa-67-2 (LSL Nos. 70L1135 - 70L1142)

Location: Monona County, Iowa; about 12 mile east and 2 miles north of east edge of Whiting, Iowa; 265 feet

south and 145 feet west of the northeast corner of the SE4 sec. 24, T. 85 N., R. 46 W.

Vegetation and land use: Corn, harvested; cropland.

Parent material: Loamy alluvial sediments deposited by the Missouri River,

Physiography: This site is among the highest elevations in the bottoms and between the slackwater areas to the east and the river channel to the west. Area is high enough that it has not been subject to overflow or deposition in recent times. Site is about 10% miles east of the Missouri

River and 6 miles west of the uplands.

Relief: Nearly level.

Slope: Less than 1 percent.

Drainage: Well drained to moderately well drained.

Erosion: None. Ground water: None. Permeability: Moderate.

Described by: J. R. Culver, C. S. Fisher, J. R. Worster, and F. F. Riecken; October 27, 1970.

(Colors are for moist soil unless otherwise stated)

Ap 70L1135 0 to 19 cm (0 to 7 inches). Very dark brown (10YR 2/2) silt loam, very dark brown (10YR 2/2) to very dark grayish brown (10YR 3/2) crushed; weak very fine subangular blocky and weak fine granular structure; friable; neutral; clear smooth boundary.

Al2 70L1136 19 to 36 cm (7 to 14 inches). Very dark brown (10YR 2/2) stit loam, very dark grayish brown (10YR 3/2) crushed; weak fine subangular blocky and weak fine granular structure; friable; neutral; clear smooth boundary.

B2 7011137 36 to 55 cm (14 to 22 inches). Dark grayish brown (10YR 4/2) to very dark grayish brown (10YR 3/2) silt loam, faces of peds very dark brown (10YR 2/2) and very dark grayish brown (10YR 3/2), dark grayish brown (2.5Y 4/2) crushed; weak fine and very fine subangular blocky structure; very friable; common very fine tubular pores; few circular krotovinas about 7 mm in diameter of grayish brown (2.5Y 5/2) material; middly alkaline; clear smooth boundary.

B3 70L1138 55 to 80 cm (22 to 32 inches). Brown (10YR 5/3) to dark grayish brown (2.5Y 4/2) and light olive brown (2.5Y 5/4) coarse silt loam; few fine faint dark yellowish brown (10YR 4/4) mottles; weak fine and moderate subangular blocky structure; very friable; common very fine tubular pores; few ped coats and common wormcasts of very dark grayish brown (10YR 3/2); brown (7.5YR 4/4) coatings in old root channels; strongly effervescent; moderately alkaline; gradual smooth boundary.

C1 70L1139 80 to 112 cm (32 to 45 inches). Brown (10YR 5/3) to dark grayish brown (2.5Y 4/2) grayish brown (2.5Y 5/2), and light olive brown (2.5Y 5/4) coarse silt loam, few fine distinct yellowish brown (10YR 5/4) morries, massive, years frights, common years fine tubular royses, a few yearsests, and dark country by

SOIL CLASSIFICATION-HOOLIC OCHRAQUALF
FINE, MONTMORILLONITIC, MESIC
SERIES - - - - - - - KNIFFIN

SQIL NO - + - - - S6910WA-4-2 COUNTY - - - APPANDOSE U.S. DEPARTMENT OF AGRICULTURE
SOIL CONSERVATION SERVICE MRISC
SOIL SURVEY INVESTIGATIONS UNIT
LINCOLN, NEBRASKA

GENERAL METHODS- - - 1AZA, 1818, 182, 18

SAMPLE NOS. 691990-691998

| DEPTH  | HORIZON | (- ~ - |        |      |        | 1     | PARTICL      |        |       |       |                |       |      |      |          |       |      | PATIO       |
|--------|---------|--------|--------|------|--------|-------|--------------|--------|-------|-------|----------------|-------|------|------|----------|-------|------|-------------|
|        |         | •      |        |      | FINE ( |       |              | SAND - | ~     | )     | )( <del></del> | SILT- | }    | ÉAML | INTR     | EINE. | NON- | <u> 801</u> |
|        |         | SAND   | SILT   | CLAY | CLAY   | vcos. | CORS         | MEDS   | FNES  | VENS  | COSI           | FNSI  | VFSI | TEXT | 11       | CLAY  | C03- | - 15-       |
|        |         | 2-     | . O5 – | LT.  | . LT . | 2~    | 1-           | .5     | 25    | 10-   | <b>▲05</b> .   | 02    | 005  | SANO | 2        |       | CLAY | L BAR       |
|        |         | .05    | .002   | -002 | .0002  | 1     | .5           | . 25   | .10   | .05   | -02            | . 002 | .002 | 21   | -02      | CLAY  |      | TO          |
| CM     |         | 1      |        |      | ·      |       | <del>-</del> | - PCT  | LT 2M | M ~ ~ |                |       |      |      | ≠ .=. =1 | PCI   | PCI  | _CL AY      |
| 00-018 | AP      | 2,9A   | 68.7   | 28.4 | 15.7   | .4    | .8           | •7     | .6    | -4    | 30.6           | 38.1  |      | 2.5  | 31.2     | . 55  |      | .44         |
| 18-028 | A2      | 2.9A   | 67.3   | 29.8 | 16.4   | .4    | 1.1          | .7     | . 4   | . 3   | 29.1           | 38.2  |      | 2.6  | 29.5     | 55    |      | -42         |
| 28-038 | BI      | 1.94   | 57.5   | 40.6 |        | . 5   | .7           | . 3    | . 2   | .2    | 23.3           | 34.2  |      | 1.7  | 23.6     |       |      | 41          |
| 38-053 | 821T    | .7A    | 45.9   | 53.4 |        | - 1   | .2           | . 1    | .1    | .2    | 17.8           | 28.1  |      | - 5  | 18.0     |       |      | .43         |
| 53-064 | B22T    | .6A    | 52.4   | 47.0 |        | .1    | .1           | .1     | -1    | .2    | 20.2           | 32.2  |      | . 4  | 20.5     |       |      | . 45        |
| 64-079 | B23T    | 1 - OA | 57.6   | 41-4 |        | -0    | •2           | .1     | • 3   | .4    | 23.6           | 34.0  |      | - 6  | 24.1     |       |      | .48         |
| 79-122 | B31T    | 1.5A   | 63.6   | 34.9 |        | .1    | -4           | . 2    | . 4   | - 4   | 26.3           | 37.3  |      | 1.1  | 26.9     |       |      |             |
| 22-145 | B32T    | 3.5A   | 63.3   | 33.2 | 19.3   | - 1   | .5           | .7     | 1.3   | . 9   | 20.5           | 42.8  |      | 2-6  | 22.1     | 58    |      | .46         |
| 45-168 | 2C1     | 7.0    | 62-1   | 30.9 |        | . 2   | 1.0          | 1.5    | 2.7   | 1.6   |                | 38.1  |      |      | 27.0     |       |      | -42         |

| DEPTH   | (PART          |                 | IZE ANA |   |   | 38 . 3B1  | , 3821<br>1         | ( BUL<br>4AlD       | K DENS      | AD1  | )(<br>481C         | -WATE              | R CON             | TENT-            | )      | AVAIL7   | ,          | 1)<br>BCLE  |  |
|---------|----------------|-----------------|---------|---|---|-----------|---------------------|---------------------|-------------|------|--------------------|--------------------|-------------------|------------------|--------|----------|------------|-------------|--|
| ĊĦ      | GT<br>2<br>PCT | GT<br>75<br>PCT |         |   |   | .074<br>) | 20-2<br>PCT<br>LT20 | 1/3-<br>BAR<br>G/CC | DRY<br>G/CC | COLE | 1/10<br>BAR<br>PCT | 1/3-<br>BAR<br>PCT | 15-<br>BAR<br>PCT | WRD<br>CMZ<br>CM | . ,    | LBS/ACRE | 1/1<br>H20 | 1/2<br>CACL |  |
| 000-018 | . 0            |                 |         |   |   | 97        | 0                   | 1.30B               |             |      |                    |                    | 12.4              |                  |        | 14       | 5.5        | 5.1         |  |
| 018-028 | 0              | 0               | o       | 0 | 0 | 97        | 0                   | 1.34                | 1.47        | .031 | 31.0               | 29.0               | 12.5              | .22              | 0.90   | 10       | 4.7        | 4.3         |  |
| 028-038 | 0              | 0               | 0       | 0 | 0 | 98        | 0                   | 1.28                | 1.53        | .061 | 32.8               | 31.1               | 16.8              | .18              | 1.90   | 8.5      | 5.0        | 4.2         |  |
| 038-053 | . 0            | 0               | 0       | 0 | 0 | 99        | 0                   | 1.26                | 1.89        | .145 | 40.1               | 38.3               | 23.0              | 19               | 1.7C   | 6.5      | 5.0        | 4.3         |  |
| 053-064 | . 0            | 0               | 0       | 0 | ٥ | 100       | 0                   | 1.36                | 1.92        | .122 | 34.7               | 34.6               | 21.3              | -18              | 1.50   | 8_5      | 5.1        | 4.5         |  |
| 064-079 | 0              | 0               | 0       | 0 | ٥ | 99        | 0                   | 1.41                | 1.91        | .107 | 32.8               | 30.8               | 19.8              | -16              | 1 - 6C | 11.5     | 5.2        | 4.7         |  |
| 079-122 | . 0            | 0               | 0       | 0 | 0 | 99        | . 0                 | 1.41                | 1.86        | .097 | 33.8               | 31.2               | 17.6              | -19              | 1.10   | 20       | 5.2.       | . 5.4.      |  |
| 122-145 | 0              | O               | 0       | 0 | ٥ | 97        | 0                   | 1.40B               |             |      |                    |                    | 15.2              |                  |        | 43       | 6-1        | 5.6         |  |
| 145-168 | . 0            | 0               | 0       | 0 | 0 | 94        | 0                   | 1.52                | 1.76        | .050 | 30.3               | 27.8               | 12.9              | -23              | 0.6C   | 46       | 6 a D      | 5.4         |  |

| EPTH  | ORGANIO<br>6A1A<br>ORGN<br>CARB | MATT<br>681A<br>NITG | ER )<br>C/N | IRON<br>6C2A<br>EXT<br>FE | PHOS<br>65 LA<br>TOTL | (€)<br>6N2E<br>CA | (TRACT)<br>602D<br>MG | NBLE BA<br>6924<br>NA | SES 58<br>602A<br>K | SUM<br>EXTB | 6H1A<br>BACL | AL<br>6G10<br>KCL<br>EXT | CAT<br>5A3A<br>EXTB<br>ACTY | 5A6A<br>NHAC | RATIO<br>801<br>NHAC<br>TO | RATIO<br>8D3<br>CA | CA<br>5F<br>S AT<br>NHAC. | EXTB | SAT )<br>5C)<br>NHAC |
|-------|---------------------------------|----------------------|-------------|---------------------------|-----------------------|-------------------|-----------------------|-----------------------|---------------------|-------------|--------------|--------------------------|-----------------------------|--------------|----------------------------|--------------------|---------------------------|------|----------------------|
| CM    | PCT                             | PCT                  |             | PC T                      | PCT (                 |                   |                       |                       | MEQ                 | / 100       | G            |                          |                             | 1            | CLAY                       | MG                 | PCT                       | PCT  | PCT                  |
| 00-01 | B 2.07D                         | -199                 | 10          |                           |                       | 13.7              | 3.3                   | 0-2                   | 0.4                 | 17.6        | 11.3         | 0.1                      | 28.9                        | 24.0         | 0.85                       | 4.2                | 57                        | 61   | 73                   |
|       | 8 1.24                          | -123                 | 10          |                           |                       | 8.5               | 3.4                   | 0.2                   | 0.3                 |             | 16.3         | 1.9                      | 28.7                        | 21.9         | 0.73                       | 2.5                | 39                        | 43   | 57                   |
| 28-03 | 8 0.79                          | .088                 | 9           |                           |                       | 11.8              | 6.0                   | 0.7                   | 0.5                 | 19.0        | 16.0         | 2.4                      | 35.0                        | 27.4         | 0.67                       | 2.0                | 43                        | 54   | 65                   |
| 38-05 | 3 0.76                          | .085                 | 9           |                           |                       | 18.0              | 9.4                   | 1.3                   | 0.9                 | 29.6        | 17.7         | 2.5                      | 47.3                        | 38.7         | 0.72                       | 1.9                | 47                        | 63   | 76                   |
| 53-06 | 4 0.49                          | .059                 | 8           |                           |                       | 18.5              | 9.5                   | 1-6                   | 0.8                 | 30.4        | 13.5         | 1.5                      | 43.9                        | 34.8         | 0.74                       | 1.9                | 53                        | 69   | 87                   |
| 64-07 | 9 0.30                          |                      |             |                           |                       | 17.9              | 9.0                   | 1-6                   | 0.7                 | 29.2        | 11.2         | 0.8                      | 40.4                        | 31.5         | 0.76                       | 2.0                | 57                        | 72   | 93                   |
| 79-12 | 2 0.14                          |                      |             |                           |                       | 16.8              | 8.3                   | 1.6                   | 0.7                 | 27.4        | 8.0          |                          | 35.4                        | 28,4         | 0.81                       | 2.0                | 59.                       | 71   | 95                   |
| 22-14 | 5 0.15                          |                      |             |                           |                       | 13.8              | 6.5                   | 1.3                   | 0.6                 | 22.2        | 7.4          |                          | 29.6                        | 22.9         | 0.69                       | 2.1                | 60                        | 75   | 97                   |
| 45-16 | 8 0-12                          |                      |             |                           |                       | 11.7              | 5.4                   | 1.0                   | 0.5                 | 18.6        | 7.8          |                          | 26.4                        | 19.7         | 0.44                       | 2.2                | .59                       | 70   | 94                   |

<sup>(</sup>A) FE/MN NODULES COMPRISE MORE THAN 75 PCT OF THE SAND (0-145 CM).

(B) BULK DENSITY ESTIMATED FOR HORIZONS FROM 0-18 AND 122-145 CM.

(C) MICRO-PENETRATION RESISTANCE - A ROD 0.6 CM DIA IS SLOWLY PUSHED INTO BULK DENSITY CLOD, EQUILIBRATED AT 1/10- BAR,

A DISTANCE OF 0.6 CM USING A POCKET PENETROMETER. UNITS ARE FORCE (KG) AND NOT ESTIMATES OF UNCONFINED COMPRESSIVE

STRENGTH.

(D) ORGANIC CARBON IS 11 KG PER SQ M TO A DEPTH OF 1 METER (METHOD 6A).

(E) IOWA STATE UNIVERSITY DATA.

Pedon classification: Udollic Ochraqualf; fine, montmorillonitic, mesic.

Series classification: (Same as pedon).

Soil: Kniffin silt loam.

Scil no.: S69-Iowa-4-2 (LSL Nos. 69L990 - 69L998).

Location: Appanoose County, Iowa, 2,588 feet north and 45 feet east of the southeast corner of the SW4 SW4

Sec. 35, T. 68 N., R. 19 W.

Vegetation and land use: Oats stubble; cropland.

Parent material: Partly from deoxidized and leached and partly from oxidized and leached Wisconsin loess; pedisediment at 57 inches.

pedisediment at 3/ inches.

Physiography: Nose of a nearly level extended interfluve. Breaks rather sharply to D slope (9 to 14 percent)

to the northeast.

Relief: Gently sloping narrow convex upland ridge.

Slope: 2 percent.

Drainage: Somewhat poorly drained.

Ground water: None.

Permeability: Very slow.

Described by: J. D. Highland, J. R. Culver and T. E. Fenton November 3, 1969.

(Colors are for moist conditions unless otherwise stated)

Ap 69L990 0 to 18 cm (0 to 7 inches). Very dark gray (10YR 3/1) silt loam; very dark grayish brown (10YR 3/2) crushed, gray (10YR 5/1) dry; cloddy breaking to moderate fine granular structure; friable; medium acid; abrupt smooth boundary.

A2 69L991 18 to 28 cm (7 to 11 inches). Dark grayish brown (10YR 4/2) silt loam, discontinuous very dark grayish brown (10YR 3/2) coatings in upper 2 inches, light brownish gray (10YR 6/2) dry; weak coarse platy structure parting to moderate fine subangular blocky and granular structure; friable; few fine soft black (5YR 2/1) oxides; very strongly acid; clear smooth boundary.

B1 69L992 28 to 38 cm (11 to 15 inches). Brown (10YR 5/3) heavy silty clay loam, grayish brown (10YR 5/2) coatings on peds. few fine distinct vellowish brown (10YR 5/4) motrice: moderate very fine subangular blocky

structure; firm; few thin discontinuous dark grayish brown (10YR 4/2) clay films; few soft brown (7.5YR 4/4) and black (5YR 2/1) oxides; strongly acid; clear smooth boundary.

B21t 691993 38 to 53 cm (15 to 21 inches). Dark grayish brown (10YR 4/2) medium silty clay; many fine prominent yellowish brown (10YR 5/6) mottles and few fine prominent strong brown (7.5YR 5/6) mottles; moderate fine and very fine angular and subangular blocky structure; very firm; thick continuous dark grayish brown (10YR 4/2) and moderately thick discontinuous dark gray (10YR 4/1) clay films on peds; few soft dark reddish brown (5YR 2/2) oxides; strongly acid; gradual smooth boundary.

B22t 69L994 53 to 64 cm (21 to 25 inches). Dark grayish brown (10YR 4/2) silty clay, many fine prominent strong brown (7.5YR 5/6) and yellowish brown (10YR 5/6) mottles; moderate medium prismatic structure parting to moderate fine subangular blocky structure; very firm; thick continuous dark gray (10YR 4/1) clay films; few fine hard dark reddish brown (5YR 2/2) and dark brown (7.5YR 3/2) oxides; strongly acid; gradual smooth boundary.

B23t 69L995 64 to 79 cm (25 to 31 inches). Grayish brown (2.5Y 5/2) silty clay; common medium prominent strong brown (7.5YR 5/6) mottles; moderate medium prismatic structure parting to moderate fine and medium subangular blocky structure; very firm; few thin discontinuous dark grayish brown (2.5Y 4/2) clay films on faces of peds; few fine hard dark reddish brown (5YR 2/2) and dark brown (7.5YR 3/2) oxides; medium acid; gradual smooth boundary.

B31t 69L996 79 to 122 cm (31 to 48 inches). Grayish brown (5Y 5/2) medium to heavy silty clay loam; many coarse prominent strong brown (7.5YR 5/8) mottles; deoxidized and leached weathering zone; moderate medium prismatic structure; very firm; few thin discontinuous clay films on prisms and in root channels; common medium hard dark reddish brown (5YR 2/2) oxides; medium acid; gradual smooth boundary.

B32t 69L997 122 to 145 cm (48 to 57 inches). Gray (5Y 6/1) light silty clay loam, faces of peds grayish brown (2.5Y 5/2), common coarse prominent strong brown (7.5YR 5/8) mottles; deoxidized and leached weathering zone; moderate coarse prismatic structure; firm; common fine hard dark reddish brown (5YR 2/2) oxides; neutral; clear smooth boundary.

IIC1 69L998 14to 168 cm (57 to 66 inches). Mottled gray (5Y 5/1) and strong brown (7.5YR 5/8) gritty heavy silt loam to light silty clay loam pedisediment; massive; vertical cleavage; firm; few dark gray (10YR 4/1) colloidal coats on vertical faces; common fine hard dark reddish brown (5YR 2/2) oxides; neutral.

Remarks: Loamy pedisediment occurs at a depth of 57 inches. Gumbotil (Yarmouth-Sangamon paleosol) is at a depth

041-051

CLAY MINERALOGY (TAZC). PLACE 046-58 MT3 MIZ KKZ. 018-28(SATELLITE) MIZ KKZ MT1.

PLACEMENT (S691A-93-1) MONYMORILLONITIC.

Pedon classification: Udollic Ochraqualf: fine, montmorillonitic, mesic.

Series classification: (Same as pedon).

Series classification: (Same as pedon).
Soil: Kniffin silt loam.
Soil: Kniffin silt loam.
Soil: No.: S69-lowa-93-1 (LSL Nos. 691999 - 6911011).
Location: Wayne County, Lowa; 60 feet north and 750 feet east of the southwest corner of the SE4 SW4 Sec. 16,
T 67 N., R 22 W.

Vegetation and land use: Bluegrass; pasture.

Parent material: Partly from oxidized and leached and partly from deoxidized and leached Wisconsin loss low

in sand (less than 5 percent).

Physiography: Convex ridgecrest on a north by northeast axis which adjoins the nearly level stable usland divide to the southwest. Near the nose of a well-defined extended interfluve. Breaks cherply to D and E slopes (9 to 18 percent) to east and west.

Relief: Gently aloping convex ridge.

Slope: 2 percent.

Drainage: Somewhat poorly drained.

Ground water: None observed.

Erosion: Slight.

Permeability; Very slow.

Described by: J. D. Highland, J. R. Culver and T. E. Fenton; November 3, 1969.

(Colors are for moist conditions unless otherwise stated)

Al 69L999 0 to 15 cm (0 to 6 inches). Very dark gray (10YR 3/1) silt loam, gray (10YR 5/1) dry; moderate fine subangular blocky parting to moderate fine granular structure; friable; strongly acid; clear smooth boundary.

A2 6911000 15 to 23 cm (6 to 9 inches). Very dark grayish brown (10YR 3/2) light silty clay loam; dark grayish brown (10YR 4/2) coatings on peds; kneaded very dark grayish brown (10YR 3/2); weak fine subangular blocky and granular structure; friable; light gray (10YR 6/1 dry) patches of thin silt coats on plates; few fine dark brown (7.5YR 3/2) oxides; few very dark gray (10YR 3/1) wormcasts; very strongly acid; clear smooth boundary.

B1 69L1001 23 to 36 cm (9 to 14 inches). Dark grayish brown (10YR 4/2) light silty clay; discontinuous very dark grayish brown (10YR 3/2) on coatings of peds; few fine faint dark yellowish brown (10YR 4/4) mottles; kneaded dark grayish brown (2.5Y 4/2); moderate very fine subangular blocky structure; firm; horizontal band of light gray (10YR 6/1 dry) silt coats on peds; few fine dark brown (7.5YR 3/2) oxides; few very dark gray (10YR 3/1) wormcasts; very strongly acid; clear smooth boundary.

B21t 69L1002 36 to 46 cm (14 to 18 inches). Dark grayish brown (10YR 4/2) heavy silty clay; many fine prominent yellowish brown (10YR 5/6) and few fine distinct strong brown (7.5YR 5/6) mottles; few very dark gray (10YR 3/1) wormcasts; moderate fine angular blocky and subangular blocky structure; very firm; thick discontinuous very dark gray (10YR 3/1) clay films; few fine dark brown (7.5YR 3/2) oxides; strongly acid; gradual smooth boundary.

B22t 69L1003 46 to 58 cm (18 to 23 inches). Dark grayish brown (10YR 4/2) medium silty clay; many fine prominent yellowish brown (10YR 5/6) and common fine distinct strong brown (7.5YR 5/6) mottles; moderate fine angular blocky and subangular blocky structure; very firm; thick discontinuous dark gray (10YR 4/1) clay films; few fine dark reddish brown (5YR 3/2) oxides; strongly acid; gradual smooth boundary.

B23t 69L1004 58 to 71 cm (23 to 28 inches). Grayish brown (2.5Y 5/2) light silty clay; many fine prominent yellowish brown (10YR 5/4 and 5/8) and strong brown (7.5YR 5/6) mottles; weak coarse prismatic structure parting deoxidized and leached weathering zone; few fine dark reddish brown (5TR 3/2) oxides; medium acid; gradual smooth boundary.

B31t 69L1005 71 to 89 cm (28 to 35 inches). Mottled olive gray (5Y 5/2) and yellowish brown (10YR 5/6) heavy silty clay loam; weak coarse prismatic structure parting to weak medium and coarse angular blocky structure; firm; few discontinuous clay films; some dark grayish brown (10YR 4/2) on faces of prisms; deoxidized and leached weathering zone; many fine dark reddish brown (5MR 3/2) soft oxides; few dark reddish brown (5MR 2/2) stains on ped surfaces; slightly acid; gradual smooth boundary.

B32t 69L1006 89 to 114 cm (35 to 45 inches). Mottled olive gray (57 5/2) and yellowish brown and strong brown (10YR 5/6 and 7.5YR 5/6); medium silty clay loam; kneaded yellowish brown (10YR 5/4); weak coarse prismatic structure; firm; few discontinuous clay films on faces of prisms; deoxidized and leached weathering zone; many fine soft dark reddish brown (5YR 3/2) oxides; slightly acid; gradual wavy boundary.

B33 69L1007 114 to 132 cm (45 to 52 inches). Gray (5Y 6/1) light silty clay loam; many fine prominent atrong brown (7.5YR 5/8) and few fine prominent reddish brown (5YR 4/4) mottles; kneaded yellowish brown (10YR 5/4); weak coarse prismatic structure; friable; deoxidized and leached weathering zone; many fine soft dark reddish brown (5YR 3/2) oxides and stains; neutral; gradual smooth boundary.

132 to 160 cm (52 to 63 inches), Mottled dark grayish brown (2.5Y 4/2), light brownish gray (2.5Y 6/2), and dark yellowish brown (10YR 4/4) silt loam; weak fine and medium platy structure; friable; few very dark gray (10YR 3/1) stains on surface of plates; occasional charcoal flecks; neutral; gradual smooth boundary.

C 69L1009 160 to 180 cm (63 to 71 inches). Yellowish brown (10YR 4/4) silt loam high in sand; common fine prominent light brownish gray (2.5Y 6/2) mottles; massive; occasional charcoal flecks.

Remarks: A2 horizon not well expressed in pit. A satellite sample of the A2 (7-11 in.) and B21t (16-20 in.) was collected 330 feet north northeast of the principal site and is considered to be more representative of the A2 horizon for the Kniffin soils.

2-Kniffin silt loam

Satellite Kniffin Site - 330 feet north, northeast of prime site.

Al 69L1010 18 to 28 cm (7 to 11 inches). Dark grayish brown (10YR 4/2) silt loam, weak coarse platy structure parting to weak very fine subangular blocky; friable; some very dark gray (10YR 3/1) coatings on surfaces of plates; few fine soft dark reddish brown (5YR 2/2) oxides; strongly acid; clear smooth boundary.

B21t 69L1011 41 to 51 cm (16 to 20 inches). Dark grayish brown (10YR 4/2) medium silty clay; common fine distinct yellowish brown (10YR 5/6) mottles; moderate very fine subangular blocky structure; very firm; thick continuous very dark gray (10YR 3/1) clay films on faces of peds; few fine dark brown (7.5YR 3/2) oxides; strongly acid, gradual smooth boundary.

SOIL NO - - - - - S701A-67-1

COUNTY - - - MONONA

GENERAL METHODS= = -14,1818,241,28

SAMPLE NOS. 70L1125-70L1134

NOVEMBER 1975

| 000000                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                          |                                                                                                |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                               |                                                                                                                                              |                                                                             | <del></del>                               |                          |                 |                     |                            |                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------|--------------------------|-----------------|---------------------|----------------------------|---------------------|
| DEPTH                                                                                                                                                                                                 | HORI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ZUN                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                          |                                                                                                | FINE                                                                                                                             | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAND -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                               | } {                                                                                                                                          | -SILT-                                                                      |                                           | FAML                     | INTR            | FINE                | NON-                       | 8D1                 |
|                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                | SAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -05-                                                                                                                     | LT                                                                                             | LT                                                                                                                               | VC05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MEDS<br>5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -25-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .10-                                                                                                                          |                                                                                                                                              |                                                                             |                                           |                          |                 | CLAY<br>TO          | CU3-                       |                     |
| €₩                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                | {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                          |                                                                                                |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .10<br>  LT 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .05<br>1M                                                                                                                     |                                                                                                                                              |                                                                             |                                           | 21                       |                 | CLAY<br>) PCT       | PCT                        | GL AY               |
| 000-18                                                                                                                                                                                                | AP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51.1                                                                                                                     | 46.0                                                                                           | 26.5                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.6                                                                                                                           | 24.2                                                                                                                                         | 26.9                                                                        | 8.9                                       | .3                       |                 |                     |                            | -52                 |
| 018-46<br>0 <b>46-6</b> 1                                                                                                                                                                             | Al<br>As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                | 2.9<br>1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 46.9<br>38.1                                                                                                             |                                                                                                |                                                                                                                                  | T A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •2<br>•1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .4<br>.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.2                                                                                                                           |                                                                                                                                              |                                                                             | 9.1<br>9.4                                | .7<br>.5                 | 21.9<br>16.1    |                     |                            | .50<br>-43          |
| 061-81<br>081-102                                                                                                                                                                                     | B21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                | 1.6<br>2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                          |                                                                                                |                                                                                                                                  | .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                               | 6.3<br>8.2                                                                                                                                   | 23.1<br>24.4                                                                | 11.1                                      | .8<br>.9                 | 7.4             |                     |                            | .40<br>.41          |
| 102-128                                                                                                                                                                                               | 8 3 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                | 2.8<br>2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 42.9                                                                                                                     | 54.3                                                                                           | 28.8                                                                                                                             | . 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.8                                                                                                                           | 15.0                                                                                                                                         | 27.9                                                                        | 8.7                                       | 1.0                      | 17.1            | 5.3                 |                            | -48<br>-40          |
| 152-178                                                                                                                                                                                               | C2G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53.9<br>51.0                                                                                                             | 41.9                                                                                           | 21.8                                                                                                                             | .i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.1                                                                                                                           | 20.6                                                                                                                                         | 33.3                                                                        | 1.0                                       | 1.2                      | 24.4            | 52                  |                            | .45                 |
| 178-205<br>000-18                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (A)                                                                                                                                                                                            | 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31.0                                                                                                                     | 42.8                                                                                           | 17.2                                                                                                                             | . 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3+1                                                                                                                           | 12.1                                                                                                                                         | 30.9                                                                        | 9.6                                       | 3.1                      | 16-6            | 40                  |                            | .46                 |
|                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                          |                                                                                                |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                               |                                                                                                                                              |                                                                             |                                           |                          |                 |                     |                            |                     |
| DEPTH                                                                                                                                                                                                 | VOL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WE                                                                                                                       | IGHT -                                                                                         |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) SALD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4A1H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 481C                                                                                                                          | 4B1C                                                                                                                                         | 482                                                                         | 4C1                                       | <del>-</del>             | 6E1B            | ONATE<br>3A1A<br>LT | BCIA                       | 8CIE                |
|                                                                                                                                                                                                       | GT<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 75                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                          |                                                                                                | .074                                                                                                                             | PCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/3-<br>BAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | COLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/10<br>BAR                                                                                                                   | 1/3~<br>BAR                                                                                                                                  | 15-<br>Bar                                                                  | WRD<br>CM/                                |                          | LT<br>2<br>PCT  | .00 Z               | 1/1<br>H2O                 | CACL                |
| CM                                                                                                                                                                                                    | PCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PC†                                                                                                                                                                                            | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PCT                                                                                                                      | .† 75 ·                                                                                        | :                                                                                                                                | LT20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G/C¢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G/CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PCT                                                                                                                           | PC T                                                                                                                                         | PCT                                                                         | CM                                        |                          |                 | PC T                |                            |                     |
| 000-18<br>018-46                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                        | 0                                                                                              | 99                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .127<br>.131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38.3<br>35.8                                                                                                                  |                                                                                                                                              | 24.1<br>25.0                                                                | .15                                       | 2.3C<br>2.5C             |                 |                     | 6.7<br>6.5                 | 6.5<br>6.5          |
| 046-61                                                                                                                                                                                                | o<br>o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                              | o<br>o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ō                                                                                                                        | 0                                                                                              | 99                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39.6<br>42.3                                                                                                                  | 38.2<br>41.0                                                                                                                                 |                                                                             | -16                                       | 2.0C<br>2.3C             | TR              |                     | 6-9<br>7-3                 | 6.8<br>7.2          |
| 061-81<br>081-102                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | o o                                                                                                                      | ō                                                                                              | 99                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.2                                                                                                                          | 38.9                                                                                                                                         | 26.6                                                                        | .16                                       | 1.70                     | TR              |                     | 7.5                        | 7.4                 |
| 162-128<br>128-152                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                        | 0                                                                                              | 99                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.36<br>1.408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34.5                                                                                                                          | 33.3                                                                                                                                         | 25.9<br>23.2                                                                | .10                                       | 2.10                     | TR<br>Tr        | 0                   | 7.4<br>7.6                 | 7.5<br>7.4          |
| 152-178<br>178-205                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | O<br>O                                                                                                                   | 0 0 0                                                                                          | 98<br>96                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.45<br>1.508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.7                                                                                                                          | 26.9                                                                                                                                         | 18.7<br>19.5                                                                | .12                                       | 3.6C                     | TR<br>4         |                     | 7.7<br>7.9                 | 7.4<br>7.4          |
| 000-16                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                          |                                                                                                |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.0                                                                                                                          | 31.4                                                                                                                                         |                                                                             | .10                                       | 4.0C                     |                 |                     |                            |                     |
| DEPTH (                                                                                                                                                                                               | ORGANI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C MAT                                                                                                                                                                                          | TFR )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I RON                                                                                                                    | PHOS                                                                                           | (E)                                                                                                                              | CTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ABLE BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SES 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACTY                                                                                                                          | AL.                                                                                                                                          | (CAT                                                                        | EXCH)                                     | RATIG                    | RATIO           | CA                  | (8ASE                      | SATI                |
| , , , , , ,                                                                                                                                                                                           | 6A1A<br>ORGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6BIA                                                                                                                                                                                           | C/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6CZA<br>EXT                                                                                                              | 651A<br>TOTL                                                                                   | 6N2E                                                                                                                             | 602D<br>MG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6P2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6Q2A<br>K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6H1A<br>BACL                                                                                                                  | 6G1D                                                                                                                                         | 5A3A                                                                        |                                           | <b>8</b> D1              | 8D3<br>CA       |                     | 5C3<br>EXTB                | 5C1<br>NHAC         |
| CM                                                                                                                                                                                                    | CAKB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PCT                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FÉ<br>PCT                                                                                                                |                                                                                                |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EXTB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TEA                                                                                                                           | EXT                                                                                                                                          | ACTY                                                                        |                                           | TO                       | TO              | NHAC                | ACTY<br>PCT                | PCT                 |
|                                                                                                                                                                                                       | PCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                          |                                                                                                |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                               |                                                                                                                                              |                                                                             |                                           |                          | 3.3             |                     | 89                         |                     |
| 000-18<br>018-46                                                                                                                                                                                      | 1.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .15                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .7<br>.8                                                                                                                 |                                                                                                | 30.2                                                                                                                             | 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • 2<br>• 4<br>• 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.6                                                                                                                           |                                                                                                                                              |                                                                             |                                           | -82                      | 3.1             | 73                  | 90                         |                     |
| 046-61<br>061-81                                                                                                                                                                                      | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .09                                                                                                                                                                                            | 7 R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 - 1                                                                                                                    |                                                                                                | 34.1<br>33.2E                                                                                                                    | 14.8E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.4                                                                                                                           |                                                                                                                                              | 51.8                                                                        | 43.6<br>47.0                              | .73                      | 2.7             | 78                  | 93                         |                     |
| 081-102                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0<br>.9<br>1.1                                                                                                         |                                                                                                | 30.5E<br>26.1E                                                                                                                   | 13.3E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46.L<br>39.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               |                                                                                                                                              |                                                                             | 44.5<br>36.8                              | •68<br>•68               |                 |                     |                            |                     |
| 102-128                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                          |                                                                                                |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                               |                                                                                                                                              |                                                                             | 37.3                                      | .65                      |                 |                     |                            |                     |
| 102-128                                                                                                                                                                                               | . 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.1                                                                                                                      |                                                                                                | 28.4E                                                                                                                            | 11.8E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                               |                                                                                                                                              |                                                                             |                                           |                          |                 |                     |                            |                     |
| 128-152<br>152-178<br>178-205                                                                                                                                                                         | .39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.1<br>.8<br>1.0                                                                                                         |                                                                                                | 28.4E<br>21.1E<br>25.8E                                                                                                          | 8.9E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                               |                                                                                                                                              |                                                                             | 30.2<br>28.2                              |                          |                 |                     |                            |                     |
| 128-152<br>152-178                                                                                                                                                                                    | .39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 8                                                                                                                      |                                                                                                | 28.4E<br>21.1E                                                                                                                   | 8.9E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0<br>.1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31.8<br>36.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               |                                                                                                                                              |                                                                             | 30-2<br>28-2                              | .72<br>.66               |                 |                     |                            | · · · · · · · ·     |
| 128-152<br>152-178<br>178-205                                                                                                                                                                         | .39<br>.38<br>.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ATED !                                                                                                                                                                                         | PASTE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0<br>NA                                                                                                                | NA.                                                                                            | 28.4E<br>21.1E<br>25.8E                                                                                                          | 8.9E<br>8.5E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .8<br>.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SATURA                                                                                                                        | ATION E                                                                                                                                      | EXTRACT                                                                     | 30-2<br>26-2                              | .72                      |                 | >                   | ATTERE                     | ERG                 |
| 128-152<br>152-178<br>178-205<br>000-18                                                                                                                                                               | .39<br>.35<br>.35<br>(SATUR<br>8E1<br>REST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8C1B                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0<br>NA                                                                                                                | NA<br>5E                                                                                       | 28.4E<br>21.1E<br>25.8E<br>SALT<br>8D5<br>TOTL                                                                                   | 8.9E<br>8.5E<br>GYP<br>6F1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .8<br>.7<br>(<br>841A<br>EC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0<br>.1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31.8<br>36.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SATURA                                                                                                                        | TION E                                                                                                                                       | XTRACT                                                                      | 30-2<br>26-2                              | .72<br>.66               | <br>6LIA        | )<br>6M1A           | 4F1<br>LQID                | 4F2<br>PLST         |
| 128-152<br>152-178<br>178-205<br>000-18                                                                                                                                                               | .39<br>.38<br>.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8C1B                                                                                                                                                                                           | PASTE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>502                                                                                                                | NA<br>5E                                                                                       | 28.4E<br>21.1E<br>25.8E<br>SALT<br>805<br>TOTL<br>SOLU                                                                           | 8.9E<br>8.5E<br>GYP<br>6F1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .8<br>.7<br><br>841A<br>EC<br>MMHOS/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0<br>1.0<br>6NIB<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31.8<br>36.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SATURA<br>6P1A<br>NA                                                                                                          | TION E<br>6Q1A<br>K                                                                                                                          | EXTRACT<br>611A<br>603<br>LITER                                             | 30-2<br>26-2<br>8A1-<br>6J1A<br>HC03      | .72<br>.66               | 6LIA<br>504     | )<br>6M1A<br>NO3    | 4F1<br>LQID<br>LMIT<br>PCT | 4F2<br>PLST<br>INDX |
| 126-152<br>152-178<br>178-205<br>000-18                                                                                                                                                               | .39<br>.35<br>.35<br>(SATUR<br>8E1<br>REST<br>OHM-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8C1B                                                                                                                                                                                           | PASTE)<br>8A<br>H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA<br>502<br>ESP                                                                                                         | NA<br>5E                                                                                       | 28.4E<br>21.1E<br>25.8E<br>SALT<br>805<br>TOTL<br>SOLU                                                                           | 8.9E<br>8.5E<br>GYP<br>6F1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .8<br>.7<br><br>841A<br>EC<br>MMHOS/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0<br>1.0<br>6NIB<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31.8<br>36.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SATURA<br>6P1A<br>NA                                                                                                          | TION E<br>6Q1A<br>K                                                                                                                          | EXTRACT<br>611A<br>603<br>LITER                                             | 30-2<br>26-2<br>8A1-<br>6J1A<br>HC03      | .72<br>.66               | 6LIA<br>504     | 6M1A<br>NO3         | 4F1<br>LQID<br>LMIT<br>PCT | 4F2<br>PLST<br>INDX |
| 128-152<br>152-178<br>178-205<br>000-18<br>                                                                                                                                                           | .39<br>.35<br>.35<br>(SATUR<br>8E1<br>REST<br>OHM-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8C1B                                                                                                                                                                                           | PASTE)<br>8A<br>H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA<br>502<br>ESP                                                                                                         | NA<br>5E                                                                                       | 28.4E<br>21.1E<br>25.8E<br>SALT<br>805<br>TOTL<br>SOLU                                                                           | 8.9E<br>8.5E<br>GYP<br>6F1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .8<br>.7<br><br>841A<br>EC<br>MMHOS/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0<br>1.0<br>6NIB<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31.8<br>36.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SATURA<br>6P1A<br>NA                                                                                                          | TION E<br>6Q1A<br>K                                                                                                                          | EXTRACT<br>611A<br>603<br>LITER                                             | 30-2<br>26-2<br>8A1-<br>6J1A<br>HC03      | .72<br>.66               | 6LIA<br>504     | )<br>6M1A<br>NO3    | 4F1<br>LQID<br>LMIT<br>PCT | 4F2<br>PLST<br>INDX |
| 126-152<br>152-178<br>178-205<br>000-18<br>DEPTH<br>CH<br><br>000-18<br>018-46<br>046-64<br>061-81                                                                                                    | .39<br>.35<br>(SATUR<br>8E1<br>REST<br>OHM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8C1B<br>-PH                                                                                                                                                                                    | PASTE)<br>8A<br>H2O<br>PCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA<br>502<br>ESP                                                                                                         | NA<br>5E<br>SAR                                                                                | 28.4E<br>21.1E<br>25.8E<br>SALT<br>8D5<br>TOTL<br>SOLU<br>PPM                                                                    | 8.9E<br>8.5E<br>GYP<br>6F1A<br>PCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -8<br>-7<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31.8<br>36.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SATURA<br>6P1A<br>NA                                                                                                          | ATION E<br>6Q1A<br>K<br>- MEQ /                                                                                                              | EXTRACT<br>611A<br>603<br>LITER                                             | 30-2<br>26-2<br>8A1-<br>6J1A<br>HC03      | .72<br>.66               | 6LIA<br>504     | )<br>6M1A<br>NO3    | 4F1<br>LQID<br>LMIT<br>PCT | 4F2<br>PLST<br>INDX |
| 126-152<br>152-178<br>178-205<br>000-18<br>                                                                                                                                                           | . 39<br>. 38<br>. 35<br>(SATUR<br>8E1<br>REST<br>OHM-<br>CM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8C1B<br>-PH                                                                                                                                                                                    | PASTE)<br>8A<br>H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA<br>502<br>ESP                                                                                                         | NA<br>5E                                                                                       | 28.4E<br>21.1E<br>25.8E<br>SALT<br>805<br>TOTL<br>SOLU                                                                           | 8.9E<br>8.5E<br>GYP<br>6F1A<br>PCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .8<br>.7<br><br>841A<br>EC<br>MMHOS/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0<br>1.0<br>6NIB<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31.8<br>36.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SATURA<br>6P1A<br>NA                                                                                                          | TION E<br>6Q1A<br>K                                                                                                                          | EXTRACT<br>611A<br>603<br>LITER                                             | 30-2<br>26-2<br>8A1-<br>6J1A<br>HC03      | .72<br>.66               | 6LIA<br>504     | )<br>6M1A<br>NO3    | 4F1<br>LQID<br>LMIT<br>PCT | 4F2<br>PLST<br>INDX |
| 126-152<br>178-205<br>000-18<br>                                                                                                                                                                      | .39<br>.38<br>.35<br>(SATUR<br>8E1<br>REST<br>CHM-<br>CM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8C1B<br>-PH                                                                                                                                                                                    | PASTE)<br>8A<br>H2O<br>PCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA<br>502<br>ESP                                                                                                         | NA<br>5E<br>SAR                                                                                | 28.4E<br>21.1E<br>25.8E<br>SALT<br>8D5<br>TOTL<br>SOLU<br>PPM                                                                    | 8.9E<br>8.5E<br>GYP<br>6F1A<br>PCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -8<br>-7<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31.8<br>36.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SATURA<br>6P1A<br>NA                                                                                                          | ATION E<br>6Q1A<br>K<br>- MEQ /                                                                                                              | EXTRACT<br>611A<br>603<br>LITER                                             | 30-2<br>26-2<br>8A1-<br>6J1A<br>HC03      | .72<br>.66               | 6LIA<br>504     | )<br>6M1A<br>NO3    | 4F1<br>LQID<br>LMIT<br>PCT | 4F2<br>PLST<br>INDX |
| 126-152<br>152-178<br>178-205<br>000-18<br><br>DEPTH<br><br>000-18<br>018-46<br>046-64<br>061-81<br>081-102<br>102-128                                                                                | .39<br>.38<br>.35<br>(SATUR<br>8E1<br>REST<br>CHM-<br>CM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8C1B<br>-PH                                                                                                                                                                                    | PASTE)<br>8A<br>H2O<br>PCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA<br>502<br>ESP                                                                                                         | NA<br>5E<br>SAR                                                                                | 28.4E<br>21.1E<br>25.8E<br>SALT<br>8D5<br>TOTL<br>SOLU<br>PPM                                                                    | 8.9E<br>8.5E<br>GYP<br>6F1A<br>PCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -8<br>-7<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31.8<br>36.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SATURA<br>6P1A<br>NA                                                                                                          | ATION E<br>6Q1A<br>K<br>- MEQ /                                                                                                              | EXTRACT<br>611A<br>603<br>LITER                                             | 30-2<br>26-2<br>8A1-<br>6J1A<br>HC03      | .72<br>.66               | 6LIA<br>504     | )<br>6M1A<br>NO3    | 4F1<br>LQID<br>LMIT<br>PCT | 4F2<br>PLST<br>INDX |
| 126-152<br>159-178<br>178-205<br>000-18<br>                                                                                                                                                           | .39<br>.38<br>.35<br>(SATUR<br>8E1<br>REST<br>CHM-<br>CM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8C1B<br>-PH                                                                                                                                                                                    | PASTE)<br>8A<br>H2O<br>PCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA<br>502<br>ESP                                                                                                         | NA<br>5E<br>SAR                                                                                | 28.4E<br>21.1E<br>25.8E<br>SALT<br>8D5<br>TOTL<br>SOLU<br>PPM                                                                    | 8.9E<br>8.5E<br>GYP<br>6F1A<br>PCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -8<br>-7<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31.8<br>36.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SATURA<br>6P1A<br>NA                                                                                                          | ATION E<br>6Q1A<br>K<br>- MEQ /                                                                                                              | EXTRACT<br>611A<br>603<br>LITER                                             | 30-2<br>26-2<br>8A1-<br>6J1A<br>HC03      | .72<br>.66               | 6LIA<br>504     | )<br>6M1A<br>NO3    | 4F1<br>LQID<br>LMIT<br>PCT | 4F2<br>PLST<br>INDX |
| 126-152<br>152-178<br>179-205<br>000-18<br>                                                                                                                                                           | 39<br>38<br>35<br>(SATUR<br>8E1<br>REST<br>OHM-<br>CM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7-2<br>GY (7/13                                                                                                                                                                                | PASTE)<br>84<br>H20<br>PCT<br>89.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0<br>NA<br>5U2<br>ESP<br>PCT                                                                                           | NA<br>5E<br>SAR                                                                                | 28.4E<br>21.1E<br>25.8E<br>SALT<br>8D5<br>TOTL<br>SOLU<br>PPM                                                                    | 8.9E<br>8.5E<br>GYP<br>6F1A<br>PCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -8<br>-7<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31.8<br>36.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SATURA<br>6P1A<br>NA                                                                                                          | ATION E<br>6Q1A<br>K<br>- MEQ /                                                                                                              | EXTRACT<br>611A<br>603<br>LITER                                             | 30-2<br>26-2<br>8A1-<br>6J1A<br>HC03      | .72<br>.66               | 6LIA<br>504     | )<br>6M1A<br>NO3    | 4F1<br>LQID<br>LMIT<br>PCT | 4F2<br>PLST<br>INDX |
| 126-152<br>152-178<br>178-205<br>000-18<br>                                                                                                                                                           | . 39<br>. 38<br>. 35<br>. SATUR<br>SELL<br>REST<br>OHM<br>CM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8C18<br>-PH<br>7-2<br>7-2<br>GY [7/<br>T3 M                                                                                                                                                    | PASTE)<br>8A<br>H2O<br>PCT<br>89.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2<br>2<br>2<br>2<br>4<br>1.0<br>NA<br>5U2<br>ESP<br>PCT<br>2                                                             | NA<br>5E<br>SAR<br>1                                                                           | 28.4E<br>21.1E<br>25.8E<br>SALT<br>805<br>TOTL<br>SOLU<br>PPM<br>290                                                             | 8.9E<br>8.5E<br>GYP<br>6F1A<br>PCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -8 -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0<br>1.0<br>6NIB<br>CA<br>2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31.8<br>36.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SATURA<br>6P1A<br>NA<br><br>1.5                                                                                               | ATION E 601A K - MEQ /                                                                                                                       | EXTRACT<br>611A<br>CO3<br>/ LITER                                           | 30-2<br>26-2<br>8A1-<br>6J1A<br>HC03      | .72<br>.66<br>6KIA<br>CL | 6LIA<br>504     | )<br>6M1A<br>NO3    | 4F1<br>LQID<br>LMIT<br>PCT | 4F2<br>PLST<br>INDX |
| 126-152<br>152-178<br>179-205<br>000-18<br>                                                                                                                                                           | SATUR BEST CHM LANGE AND L | 8C18<br>-RH<br>7-2<br>7-2<br>GY (7:7)<br>13 M:73 M:74 M:74 M:74 M:74 M:74 M:74 M:74 M:74                                                                                                       | PASTE)<br>8A<br>H2O<br>PCT<br>89.5<br>A2C).<br>12 KK<br>12 KK<br>URILLO<br>9 (X-<br>T = MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA<br>502<br>ESP<br>PCT<br>2                                                                                             | NA 5E SAR  1                                                                                   | 28.4E<br>21.1E<br>21.1E<br>21.1E<br>21.1E<br>SALT<br>8D5<br>TOTL<br>SOLU<br>PPM<br>290                                           | 8.9E<br>8.5F<br>GYP<br>6F1A<br>PCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .8 a.7 A. B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0<br>1.0<br>6NIB<br>CA<br>2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31.8<br>36.0<br>6018<br>MG<br>1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SATURA<br>6PIA<br>NA<br>1.5                                                                                                   | .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .                                                                                                     | EXTRACT 611A CO3  LITER                                                     | 30-2<br>26-2<br>8AI-<br>6JIA<br>HCO3      | .72<br>.66<br>6K1A<br>CL | 6L1A<br>504     | )<br>6MIA<br>NO3    | 4F1<br>LQ1D<br>LMIT<br>PCT | 4F2<br>PLST<br>INDX |
| 126-152<br>152-178<br>179-205<br>000-18<br>                                                                                                                                                           | SATUR BELL COM LEGAL OF THE LOCAL COM LEGAL OF THE LOCAL COM LEGAL OF THE LOCAL COMPANY COMPAN | 7.2<br>7.2<br>GY [7.7<br>T3 M<br>T4 M<br>MUNTM<br>QUNTS<br>E - M                                                                                                                               | PASTE)<br>8A<br>H2O<br>PCT<br>89.5<br>42C).<br>12 KK.<br>12 KK.<br>12 KK.<br>12 KK.<br>12 KK.<br>12 KK.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA SU2 ESP PCT  2 2 NITE I: RAY) NITE I: RAY)                                                                            | NA<br>5E<br>SAR<br>1                                                                           | 28.4E<br>21.1E<br>25.8E<br>SALT<br>8D5<br>TOTL<br>PPM<br>290                                                                     | 8.95<br>8.55<br>GYP<br>0F1A<br>PCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -8 -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0<br>1.0<br>6NIB<br>CA<br>2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31.8<br>36.0<br>6018<br>MG<br>1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SATURA<br>6PIA<br>NA<br>1.5                                                                                                   | .1 .1                                                                                                                                        | EXTRACT 611A GO3 / LITER                                                    | 30-2<br>26-2<br>8AI-<br>6JIA<br>HC03<br>( | -72<br>-66<br>6KIA<br>CL | 6L1A<br>504     | )<br>6M1A<br>NO3    | 4F1<br>LQ1D<br>LMIT<br>PCT | 4F2<br>PLST<br>INDX |
| 126-152<br>152-178<br>179-205<br>000-18<br>                                                                                                                                                           | SATUR BELL COMMERCIAN CM L 2000 NER AL M L 2000 NER AL COMMERCIAN CM L 2000 AVAILE ABLE CM ABL | 8C18<br>PH<br>7-2<br>GY (7/<br>T3 M/<br>T4 M<br>MONTHI<br>QUNTS<br>E - N'                                                                                                                      | PASTE)<br>8A<br>H2O<br>PCT<br>89.5<br>12 KK<br>URILLO<br>+ (X-<br>T = MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA 5U2 ESP PCT 2 2. 2. NITE I: RAY) NIMOR II                                                                             | NA 5E SAR  1  1  S WELL 6 = DOILLONITI OW - 7: STIMATI                                         | 28.4E<br>21.1E<br>21.1E<br>25.8E<br>SALT<br>8D5<br>TOTL<br>PPM<br>290<br>290<br>-QRDERS<br>MINANT<br>E MI:<br>S DF CU<br>OLLI134 | 8.9E<br>6.5E<br>GYP<br>OFIA<br>PCT<br>PCT<br>4 = 4<br>UD SA<br>- BEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -8 -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0<br>1.0<br>6NIB<br>CA<br>2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31.8 36.0  6018 MG  1.2  CONTMOR MODER ILLECTE L TRACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SATURA<br>6P1A<br>NA<br>1.5                                                                                                   | ATION E 6QLA K - MEQ / - MEQ / - MEQ /                                                                                                       | EXTRACT 611A CO3 / LITER ALL 1 AP HOR!                                      | 30-2<br>26-2<br>8AI-<br>6JIA<br>HCO3<br>3 | .72 .66                  | 6L1A<br>504     | ) 6M1A NO3          | THE CO                     | 4F2<br>PLST<br>INDX |
| 126-152<br>152-178<br>179-205<br>000-18<br>                                                                                                                                                           | SATUR SEL NEST OHM LOOK NERALO OH NE | GY 17/<br>T3 M<br>T4 M<br>MONTH<br>OUNTS<br>E - M                                                                                                                                              | PASTE)<br>8A<br>H2O<br>PCT<br>69.5<br>12 KK.<br>42 KK.<br>GRILLO<br>+ X-<br>T + X-<br>T + X-<br>BLE<br>KE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2. NA SU2 ESP PCT  2. NITE I: RAY) ! NTMON II (A) TI (B) ES (C) M                                                        | NA SE SAR  1 1 SHELL- SE SAR  1 THE SE SAR  1 UNITED SE ST | 28.4E 21.1E 21.1E 25.8E  SALT 8D5 TOTL SOLU PPM  290  290  CORDERS MINANT E MI E JI E JI ENETRAIR                                | 8.95E 8.5E GYP 6F1A PCT PCT 4 = MICA OD SA - BEN FION R TION R TI | .8 .7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0<br>1.0<br>1.0<br>6NIB<br>CA<br>2.2<br>2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31.8 36.0  6018 MG  1.2  CONTMOR MDER MIDER LECTE L TRAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SATURA<br>6P1A<br>NA<br>1.5                                                                                                   | ATION E 601A K - MEQ / .1  LTIC. 2 × SH/ MEEN TH DIA 15 CM USI CM USI                                                                        | EXTRACT 611A 611A 610A ALL 1 AP HOR) 4E CORN 6 NG A F                       | 30-2<br>26-2<br>8AI-<br>6JIA<br>HCO3<br>3 | .72 .66                  | 6L1A<br>504<br> | )<br>6MIA<br>NO3    | THE CO                     | 4F2<br>PLST<br>INDX |
| 126-152<br>152-178<br>179-205<br>000-18<br>                                                                                                                                                           | SATUR SEL REST OHM CM 1200 NERALO 1 M NTS A AL COD AVAIL ABLE LBS PE 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GY (7,7 - 2 - 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4                                                                                                                                            | PASTE)<br>8A<br>H2O<br>PCT<br>49.5<br>42-<br>12 KK.<br>URILLO<br>1 = MO<br>AIL-<br>BLE<br>K<br>E (F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22-<br>2-<br>24-<br>25-<br>26-<br>26-<br>27-<br>27-<br>28-<br>28-<br>28-<br>28-<br>28-<br>28-<br>28-<br>28-<br>28-<br>28 | NA SE SAR  1 S WELL S = DOI LLONITI O SET' OUW- 7: STIMATI CRD-PQUILIBI KG) AN RGANIC          | 28.4E 21.1E 21.1E 25.8E  SALT 8D5 TOTL 5OLU PPM  290  -ORDERN HINANT E MI = 5 DF CU 60L1134 EU EU RATED D NOT I CARBOD CARBOD    | 8.95<br>8.55<br>GYP<br>6F1A<br>PCT<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .8 .7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0<br>1.0<br>1.0<br>6NIB<br>CA<br>2.2<br>2.2<br>2.2<br>4T IS MINER COMMERCE COMM | 31.8 36.0  6018 MG  1.2  GNTMORE HTDE- HLECTE L FRAC C ANCE C ANCE CINED C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SATURA<br>6P1A<br>NA<br>1.5<br>1.5<br>ED FROM<br>K BETW<br>1.6 CM<br>1.6 CM<br>1.6 CM<br>1.6 CM<br>1.6 CM<br>1.6 CM<br>1.6 CM | ATION E 6QIA K - MEQ /- L 1 L 2 = SM/M HEEN TH DIA L 1 CM USISSIVE SSIVE SSIVE SSIVE SSIVE MEEN THE /- L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L | EXTRACT 611A 611A 611A 7 LITER ALL 1 AP HOR) HE CORN S SLOWLING A FS STRENG | 30-2<br>26-2<br>8AI-<br>6JIA<br>HCO3<br>3 | .72 .66                  | 6L1A<br>504<br> | ) 6MIA NO3 )        | THE CO                     | 4F2<br>PLST<br>INDX |
| 126-152<br>152-178<br>179-205<br>000-18<br>                                                                                                                                                           | SATUR BELL COM LES PELLS | GY (7.2<br>7.2<br>GY (7.73 M MONTM OUNTS)<br>A A A A A A A A A A A A A A A A A A A                                                                                                             | PASTE)<br>8A<br>H2O<br>PCT<br>69.5<br>422 KK<br>12 KK<br>12 KK<br>12 KK<br>12 KK<br>12 KK<br>13 KK<br>14 KK<br>15 KK<br>16 KK | 2- 2- 2- 2- 2- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3-                                                                    | NA 5E SAR  1  S WELL- 5 = DOILLONITI DW. 7: 5 TIMATT (CRD-PQUILIBI KG) ANIC ETHODS ETHODS      | 28.4E 21.1E 25.8E  SALT 8D5 TOTL PPM  290  290  CORDERS MINANT E MI : SOF CI COL1134 ENETRA: RATED / D NOT I CARBO!              | 8.95E 6.5F GYP 6F1A PCT 100 SA 100 SA 101 IDN R 1101 T 125T IMAN 15 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LACEMER  ABLA  BOL  ACEMER  ABLA  ACEMER  ACEMER | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.8 36.0  6018 MG  1.2  CONTMOR MDER HITE LLECTE L TRAC ANCE C A | SATURA<br>66PIA<br>NA<br>1.5                                                                                                  | ATION E 6Q1A K K - MEQ /                                                                                                                     | EXTRACT 611A 611A 611A 7 LITER ALL 1 AP HOR) HE CORN S SLOWLING A FS STRENG | 30-2<br>26-2<br>8AI-<br>6JIA<br>HCO3<br>3 | .72 .66                  | 6L1A<br>504<br> | ) 6MIA NO3 )        | THE CO                     | 4F2<br>PLST<br>INDX |
| 126-152<br>152-178<br>179-205<br>000-18<br>                                                                                                                                                           | SATUR SEL NEST OHM LOOK NERALO OH NE | GY (7,73 M MCNTM)                                                                                                                                                                              | PASTE)<br>8A<br>H2O<br>PCT<br>69.5<br>12 KK.<br>12 KK.<br>GRILLO<br>+ (X-)<br>T = MO<br>AIL-<br>BLE<br>K<br>E (F)<br>21<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2- 2- 2- 2- 2- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3-                                                                    | NA 5E SAR  1  S WELL- 5 = DOILLONITI DW. 7: 5 TIMATT (CRD-PQUILIBI KG) ANIC ETHODS ETHODS      | 28.4E 21.1E 25.8E  SALT 8D5 TOTL PPM  290  290  CORDERS MINANT E MI : SOF CI COL1134 ENETRA: RATED / D NOT I CARBO!              | 8.95E 6.5F GYP 6F1A PCT 100 SA 100 SA 101 IDN R 1101 T 125T IMAN 15 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .8 .7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.8 36.0  6018 MG  1.2  CONTMOR MDER HITELLECTE L TRAC ANCE CANCE ANCE CANCE ANCE CANCE MG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SATURA<br>66PIA<br>NA<br>1.5                                                                                                  | ATION E 6Q1A K K - MEQ /                                                                                                                     | EXTRACT 611A 611A 611A 7 LITER ALL 1 AP HOR) HE CORN S SLOWLING A FS STRENG | 30-2<br>26-2<br>8AI-<br>6JIA<br>HCO3<br>3 | .72 .66                  | 6L1A<br>504<br> | ) 6MIA NO3 )        | THE CO                     | 4F2<br>PLST<br>INDX |
| 126-152 152-178 179-205 000-18 000-18 000-18 018-60 061-81 061-81 061-81 061-81 152-152 152-178 178-205 000-18 CLAY MI CGHAR LSP                                  | SATUR SEL REST CHM LOO LOO LOO LOO LOO LOO LOO LOO LOO LO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GY (7.72  GY (7.72  GY (7.74 M  MONTM  TA M  MONTM  F ACR  1  1  1                                                                                                                             | PASTE)<br>8A<br>H2O<br>PCT<br>49.5<br>12 KK.<br>URILLO<br>4 X-T<br>F MO<br>AIL-<br>BLE<br>K (F)<br>21<br>19<br>16<br>09<br>91<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2- 2- 2- 2- 2- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3-                                                                    | NA 5E SAR  1  S WELL- 5 = DOILLONITI DW. 7: 5 TIMATT (CRD-PQUILIBI KG) ANIC ETHODS ETHODS      | 28.4E 21.1E 25.8E  SALT 8D5 TOTL PPM  290  290  CORDERS MINANT E MI : S DF CU ENETRA: RATED / D NOT II CARBO!                    | 8.95E 6.5F GYP 6F1A PCT 100 SA 100 SA 101 IDN R 1101 T 125T IMAN 15 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LACEMER  ABLA  BOL  ACEMER  ABLA  ACEMER  ACEMER | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.8 36.0  6018 MG  1.2  CONTMOR MDER HITELLECTE L TRAC ANCE CANCE ANCE CANCE ANCE CANCE MG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SATURA<br>66PIA<br>NA<br>1.5                                                                                                  | ATION E 6Q1A K K - MEQ /                                                                                                                     | EXTRACT 611A CO3  / LITER  ALL 1 AP HOR) HE CORN S SLOWLING A FS STRENG     | 30-2<br>26-2<br>8AI-<br>6JIA<br>HCO3<br>3 | .72 .66                  | 6L1A<br>504<br> | ) 6MIA NO3 )        | THE CO                     | 4F2<br>PLST<br>INDX |
| 126-152 152-178 179-205 000-18 000-18 000-18 018-46 046-61 061-81 061-81 061-81 078-178 178-205 000-18 152-17 CUMME CHAMINER UEPTH  CM 000-18 018-33 018-34 018-34 000-18 018-33 018-34 046-61 046-61 | SATUR BELL COM LESS PE AAL COD AVAIL ABLE LBS PE LBS PE 66666666666666666666666666666666666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.2  7.2  7.2  GY (77.7)  GY (77.7)  GY (77.8)                                              | PASTE)<br>84<br>H20<br>PCT<br>42C).<br>12 KK<br>12 KK<br>12 KK<br>12 KK<br>13 HE<br>14 KE<br>15 HE<br>16 HE<br>16 HE<br>17 HE<br>18 HE<br>19 HE<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2- 2- 2- 2- 2- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3-                                                                    | NA 5E SAR  1  S WELL- 6 = DOILLONITI DW. 7: 5 TIMATI (CRD-PQUILIBI KG) ANIC ETHODS ETHODS      | 28.4E 21.1E 25.8E  SALT 8D5 TOTL PPM  290  290  CORDERS MINANT E MI : S DF CU ENETRA: RATED / D NOT II CARBO!                    | 8.95E 6.5F GYP 6F1A PCT 100 SA 100 SA 101 IDN R 1101 T 125T IMAN 15 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LACEMER  ABLA  BOL  ACEMER  ABLA  ACEMER  ACEMER | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.8 36.0  6018 MG  1.2  CONTMOR MDER HITELLECTE L TRAC ANCE CANCE ANCE CANCE ANCE CANCE MG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SATURA<br>66PIA<br>NA<br>1.5                                                                                                  | ATION E 6Q1A K K - MEQ /                                                                                                                     | EXTRACT 611A CO3  / LITER  ALL 1 AP HOR) HE CORN S SLOWLING A FS STRENG     | 30-2<br>26-2<br>8AI-<br>6JIA<br>HCO3<br>3 | .72 .66                  | 6L1A<br>504<br> | ) 6MIA NO3 )        | THE CO                     | 4F2<br>PLST<br>INDX |
| 126-152 152-178 179-205 000-18                                                                                                                                                                        | 39<br>38<br>38<br>38<br>38<br>38<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GY (7,7-2)  GY (7,7-2) | PASTE)<br>84<br>H20<br>PCT<br>89.5<br>12 KK<br>12 KK<br>12 KK<br>12 KK<br>12 KK<br>12 KK<br>12 KK<br>12 KK<br>12 KK<br>13 KK<br>14 KF<br>19 H0<br>19 H0<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                    | NA 5E SAR  1  S WELL- 6 = DOILLONITI DW. 7: 5 TIMATI (CRD-PQUILIBI KG) ANIC ETHODS ETHODS      | 28.4E 21.1E 25.8E  SALT 8D5 TOTL PPM  290  290  CORDERS MINANT E MI : S DF CU ENETRA: RATED / D NOT II CARBO!                    | 8.95E 6.5F GYP 6F1A PCT 100 SA 100 SA 101 IDN R 1101 T 125T IMAN 15 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LACEMER  ABLA  BOL  ACEMER  ABLA  ACEMER  ACEMER | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.8 36.0  6018 MG  1.2  CONTMOR MDER HITELLECTE L TRAC ANCE CANCE ANCE CANCE ANCE CANCE MG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SATURA<br>66PIA<br>NA<br>1.5                                                                                                  | ATION E 6Q1A K K - MEQ /                                                                                                                     | EXTRACT 611A CO3  / LITER  ALL 1 AP HOR) HE CORN S SLOWLING A FS STRENG     | 30-2<br>26-2<br>8AI-<br>6JIA<br>HCO3<br>3 | .72 .66                  | 6L1A<br>504<br> | ) 6MIA NO3 )        | THE CO                     | 4F2<br>PLST<br>INDX |

Pedon classification: Vertic Haplaquell; very fine, montmorillonitic, mesic.

Series classification: Vertic Haplaquell; fine, montmorillonitic, mesic.1/

Soil: Luton silty clay.

Sample no.: S70-Iowa-67-1 (LSL Nos. 70L1125 - 70L1134).

Location: Monona County, Iowa; about 3 miles north of Onawa; 485 feet north and 130 feet east of road center from the southwest corner of sec. 16, T. 84 N., R. 45 W.

Vegetation and land use: Corn, harvested; cropland.

Parent material: Clayey alluvial sediments.

Physiography: Level to slightly concave backswamp area of second bottomland in Missouri River bottom. Site is about 4½ miles west of uplands and 9 miles east of Missouri River.

Relief: Level.

Slope: Less and 0.5 percent.

Drainage: Poorly to very poorly drained.

Ground water: 70 inches or 178 cm.

Permeability: Very slow.

Erosion: None.

Described by: J. R. Culver, C. S. Fisher, J. R. Worster, and F. F. Riecken; October 27, 1970.

(Colors are for moist soil unless otherwise stated)

Ap 70L1125 0 to 18 cm (0 to 7 inches). Black (N 2 or 10YR 2/1) silty clay; cloddy breaks to weak fine granular structure; friable; neutral; clear smooth boundary.

Al 70L1126 18 to 46 cm (7 to 18 inches). Black (N 2) silty clay, few small circular areas about 5 mm in diameter of dark grayish brown (2.5Y 5/2); moderate very fine subangular blocky structure; firm; few fine soft dark brown accumulations of oxides; neutral; gradual smooth boundary.

A3 70L1127 46 to 61 cm (18 to 24 inches). Very dark gray (5Y 3/1) silty clay; few fine distinct olive brown (2.5Y 4/4) mottles; strong very fine subangular blocky and angular blocky structure; firm; some thin discontinuous very dark brown (10YR 2/2) coatings on peds; few fine soft dark brown accumulations of oxides; mildly alkaline; clear smooth boundary.

B21g 70L1128 61 to 81 cm (24 to 32 inches). Dark gray (5Y 4/1) silty clay, common fine faint light olive brown (2.5Y 5/4) mottles; moderate very fine subangular blocky and angular blocky structure; very firm; thin continuous films on peds; few fine soft dark brown accumulations of oxides; a few %-inch wide vertical cracks are filled with black (N 2) silty clay; mildly alkaline; clear smooth boundary.

B22g 70L1129 81 to 102 cm (32 to 40 inches). Dark gray (5Y.4/1) silty clay; common fine distinct olive brown (2.5Y 5/4) and dark yellowish brown (10YR 4/4) mottles; moderate medium subangular blocky structure; very firm; some thin discontinuous organic films on peds, a few fine dark concretions; distinct slickensides with continuous thick dark gray (5Y 4/1) and very dark gray (5Y 3/1) films on 60° ped faces; a few 4-inch wide vertical cracks are filled with black (N 2) silty clay; moderately alkaline; clear smooth boundary.

B3g 70L1130 102 to 128 cm (40 to 50 inches). Dark gray (5Y 4/1) silty clay; few to common fine distinct olive brown (2.5Y 4/4) and yellowish brown (10YR 5/6) mottles; moderate medium subangular blocky structure; very firm; distinct slickensides with many thick dark gray (5Y 4/1) films on 60° ped faces; few 1/8-inch carbonate concretions; slightly effervescent; moderately alkaline; clear smooth boundary.

Clg 70L1131 128 to 152 cm (50 to 60 inches). Dark gray (5Y 4/1) silty clay; many medium distinct light olive brown (2.5Y 5/4) or yellowish brown (10YR 5/6) mottles; weak coarse subangular blocky structure; very firm; distinct slickensides with many thick gray (5Y 5/1) films on 60° ped faces; slightly effervescent; moderately alkaline; gradual smooth boundary.

C2g 70L1132 152 to 178 cm (60 to 70 inches). Dark gray (5Y 4/1) silty clay; many medium distinct yellowish brown (10YR 5/4 and 5/6) mottles; weak coarse subangular blocky structure; very firm; slightly effervescent; moderately alkaline; gradual boundary.

C3g 70L1133 178 to 205 cm (70 to 80 inches). Dark gray (5Y 4/1) silty clay; many medium distinct dark yellowish brown (10YR 4/4) and olive brown (2.5Y 4/4) mottles; weak medium subangular blocky structure to massive; firm; few secondary carbonates; slightly effervescent; moderately alkaline.

 $\frac{1}{2}$ /The data indicate that this type location pedon averages more than 60 percent clay in the 10 to 40 inch control section.

\_\_\_\_\_ SOIL Nos. S64Iowa-94-1 LOCATION Webster County, Iowa

SOIL SURVEY LABORATORY Lincoln, Nebraska

\_ LAB. Nos. <u>19920-19930</u>

April 1968

|                           |                   |              |              |              |                              |              |                | Şıze clas           | s and parti | cle diamete                                  | r(mm) 3      | Λ <u>1</u> . |              |              |            |                 |             |              |
|---------------------------|-------------------|--------------|--------------|--------------|------------------------------|--------------|----------------|---------------------|-------------|----------------------------------------------|--------------|--------------|--------------|--------------|------------|-----------------|-------------|--------------|
|                           |                   |              | Total        |              |                              |              |                | Sand                |             | \$11                                         | t "          |              |              |              |            |                 | se fragme   | nts 2A       |
| Depth                     | Horizon           | Sand         | Silt         | Clav         | Very                         | Coarse       | Medium         | Fine                | Very fine   |                                              | int III      | Int II       |              |              |            | 3B2             | 3B1         | -            |
| (in )                     | 110112011         | (2-0.05)     | (0.05-       | ( < 0 002)   | coarse                       | (1-0 5)      |                | (0.25-0.1)          |             | 0.05-0.02                                    | (0 02-       | (0.2-0 02)   | (2-0 1)      | <0.074       |            | 2-19            | 2-19        |              |
| . ,                       |                   | a.           | 0.002)       | l '          | (2-1)                        | l ' '        | ľ              | l                   |             |                                              | 0 002)       |              | ()           |              |            |                 | (wt.)       |              |
| 2.6                       |                   |              | ) 0          | L=/ 1        | A 7                          | Pct          |                |                     | 1           | 1302 3 1                                     | 0/ 7         | 0/ 0         | 10 1         | <del></del>  |            | €-Pct O         |             | mm —;        |
| 0-6                       | Apl               | 20.1         | 43.8<br>44.0 | 36.1         | 0.7                          | 3.0          | 3.9            | 7.8                 | 4.7         | 17.1                                         | 26.7         | 26.0<br>25.4 | 15.4<br>14.6 | 82.6<br>83.4 |            |                 | tr<br>tr    |              |
| 6-10<br>10-14             | Ap2<br>Al2        | 19.4<br>18.8 | 43.8         | 36.6<br>37.4 | 0.8                          | 2.8          | 3.5            | 7.5<br>7.1          | 4.8<br>5.2  | 16.5<br>16.5                                 | 27.5<br>27.3 | 25.7         | 13.6         | 84.2         |            |                 | tr          |              |
| 14-20                     | Bl -              | 19.8         | 41.2         | 39.0         | 1.2                          | 3.2          | 3.4            | 7.0                 | 5.0         | 15.5                                         | 26.2         | 23.9         | 14.8         | 83,2         |            |                 | 1           | -            |
| 20-26                     | B21               | 21.3         | 35.9         | 42.8         | 1.6                          | 2.9          | 3.4            | 7.9                 | 5.5         | 12.3                                         | 23.6         | 22.2         | 15.8         | 81.9         |            |                 | 4           |              |
| 26-32                     | B22g              | 22.4         | 32.7         | 44.9         | 1.9                          | 3.0          | 3.3            | 8.0                 | 6.2         | 11.4                                         | 21.3         | 22.2         | 16.2         | 81.2         |            |                 | 5           |              |
| 32-40                     | B23g              | 29.3         | 34.5         | 36.2         | 2.1                          | 3.8          | 4.5            | 10.4                | 8.5         | 11.8                                         | 22.7         | 26.3         | 20.8         | 75.7         |            | 2               | 5 ~         |              |
| 40-45                     | IIB31g            | 32.8         | 37.1         | 30.1         | 2.8                          | 4.8          | 5.0            | 11.2                | 9.0         | 13.6                                         | 23.5         | 29.0         | 23.8         | 72.5         |            | 2               | 6           |              |
| 45-49                     | TIB32g            | 36.4         | 38.8         | 24.8         | 3.0                          | 5.1          | 6.1            | 12.8                | 9.4         | 14.9                                         | 23.9         | 31.4         | 27.0         | 69.1         |            | 7               | 12          |              |
| 49 <b>-</b> 61 I          | [B33&B34          | 28.5b        | 42.1b        | 29.40        |                              | 4.2          | 4.6            | 9.9                 | 7.5         | 12.7                                         | 29.4         | 25.7         | 21.0         | 76.0         |            | 4               | 7           |              |
| 61-72                     | IICl&C2           | 32.1         | 42.1         | 25.8         | 2.5                          | 4.9          | 5.1            | 11.1                | 8.5         | 14.1                                         | 28.0         | 28.8         | 23.6         | 73.0         |            | 4               | 8           |              |
| 10                        | 6Ala              | 6Bla         |              | 6C2a         | Cosh                         | onate        | i              | Bulk densit         | <u> </u>    | 4D1                                          | W            | ater conte   | nt           |              |            |                 | ρΗ          | <del>'</del> |
|                           |                   |              |              | Ext.         | as C                         |              | <del>-</del> - | 4Ald                | 4Alb        | 1 477                                        | 4Blc         | 4B2          | 4C1          |              |            | 8C1b            | <u>р,, </u> | 8C1,         |
| Depth<br>(In )            | Organic<br>carbon | Nitrogen     | C/N          | Iron         | 6Elb                         | 3A1a         | 1/3-           | 1/3-                | Air-        |                                              | 1/3~         | 15-          | 1/3- to      |              |            | Sat.            |             |              |
| (in)                      | Carbon C          |              |              | as           | 6E2a                         | <0.002       |                | Bar                 | Dry         | COLE                                         | Bar          | Bar          | 15-Bar       |              |            | Paste           |             | (1.1)        |
|                           | -                 |              |              | Fe           | <2mm                         | mm           | a              |                     | ·           |                                              |              |              |              |              |            |                 |             |              |
|                           | Pct               | Pct          |              | Pet.         | Pct.                         | Pct.         | g/cc           | g/cc                | g/oc        |                                              | Pct          | Pct.         | in/in.       |              |            |                 |             | L.,          |
| 0-6                       | 3.86              | 0.299        | 13           | 0.5          |                              |              |                | 1.28                |             | 0.064                                        | 30.6         | 16.0         | 0.19         |              |            |                 |             | 5.8          |
| 6-10                      | 3.49              | 0.277        | 13           | 0.4          |                              |              |                | 1.35                | 1.63        | 0.064                                        | 27.5         | 16.1         | 0.16         |              |            |                 |             | 5.9          |
| 10-14                     | 2.69              | 0.218        | 12           | 0.5          |                              |              |                | 1.4e                | - /-        | 200                                          |              | 16.9         | 0.01         |              |            |                 |             | 6.0          |
| 14-20                     | 1.86              | 0.159        | 12           | 0.5          |                              |              |                | 1.32                | 1.61        | 0.068                                        | 27.3         | 16.9<br>18.1 | 0.14         |              |            |                 |             | 6.4          |
| 20-26<br>26 <b>-</b> 32   | 1.00              | 0.095        | 11           | 0.5          |                              |              |                | 1.37                |             | 0.11                                         | 29.0<br>30.5 | 18.4         | 0.15         |              |            |                 |             | 6.8          |
| <del>20-32</del><br>32-40 | 0.32              | 0.054        | 9            | 0.7          | tr(s)                        | -            | 1.32           | 1.35                |             | ŏ <del>.</del> ;                             | 29.0         | 15.9         | 0.17         |              |            | 6.9             |             | 7.4          |
| 40 <b>-</b> 45            | 0.25              |              |              | 0.7          | 5                            | l <b>-</b>   | 1.38           | 1.41                |             | 0.046                                        | 25.2         | 14.1         | 0.15         |              |            | ,               |             | 8.0          |
| 45-49                     | 0.14              |              |              | 0.7          | 16                           | _            | 1.37           | 1.47                |             | 0.037                                        | 24.1         | 12.1         | 0.16         |              |            |                 |             | 8.0          |
| 49-61                     | 0.14              |              |              | 0.7          | 17                           | tr           | 1.48           | 1.54                | 1.67        | 0.027                                        | 23.6         | 13.8         | 0.15         |              |            |                 |             | 8.0          |
| 61-72                     | 0.13              |              |              | 0.7          | 17                           | tr           | 1.48           | 1.54                | 1.66        | 0.023                                        | 23.2         | 13.1         | 0.15         |              |            | 7.4             |             | 7.9          |
|                           |                   |              |              | -53          |                              | 1 / 2004     | 0-1-D-         | -1- Cl              |             |                                              | 8F1          | 8Bla         | 8B1          | 8D5          | 8D3        |                 | Base sat    | usat an      |
|                           | 6N2a              | 602a         | 6P2a         | 5B1a<br>692a |                              | 6Hla<br>Ext. | 5A3a           | chCap.              |             |                                              | Resis-       |              | Water        | Total        | 00.5       |                 | 5C3         | 5C1          |
| Depth                     | ONSE              | 002a         | OPZa         | OWZR         |                              | Acid-        | Sum            | )ALA                |             |                                              | tivity       | Cond.        | at           | sol.         | Ca./Mg     |                 | Sum         | ~~_          |
| (ln,)                     | Çв                | Mg           | Na           | к            | Sum                          | 1tv          |                | NH <sub>L</sub> OAc |             |                                              | h            | ••••••       | Sat.         | ni atlea     | ,          |                 | Cations     | NHLOA        |
|                           |                   | Ť            |              |              |                              | ,            |                | 4                   |             |                                              | ohms-        | mmhos/       | 1            | soil         |            |                 |             | "            |
|                           | -                 |              |              |              | meq/100 g                    |              |                | -                   |             |                                              | cm           | em           | Pct.         | ppm.         |            |                 | Pct         | Pet          |
| 9-0                       | 27.3              | 7.6          | 0.1          | 0.7          | 35.7                         | 10.7         | 46.4           | 34.5                |             |                                              |              |              |              |              | 3.6        |                 | 77          | 103          |
| 6-10                      | 27.5              | 7.8          | 0.1          | 0.6          | 36.0                         | 10.5         | 46.5           | 34.1                |             |                                              |              |              |              |              | 3.5        |                 | 77<br>77    | 106          |
| 10-14                     | 24.6              | 8.1          | 0.1          | 0.6          | 33.4                         | 9.7          | 43.1           | 32.7                |             |                                              |              |              | <u> </u>     | ļ            | 3.0<br>2.7 |                 | 79          | 102          |
| 14-20                     | 24.3<br>26.4      | 8.9          | 0.1          | 0.6<br>0.7   | 33.9<br>38.4                 | 8.8<br>5.6   | 42.7<br>44.0   | 32.7<br>33.9        |             |                                              |              |              |              |              | 2.4        |                 | 87          | 113          |
| 20-26<br>26-32            | 25.6              | 11.1         | 0.2          | 0.6          | 37.7                         | 3.7          | 41.4           | 32.2                |             |                                              |              |              |              |              | 2.3        |                 | 91          | 117          |
| 72-40                     | 19.4f             | 8.78         | 0.3          | 0.6          | 29.0                         | 2.4          | 31.4           | 26.8                |             |                                              | 1300         | 0.86         | 55.5         | 550          | 2.2        |                 | 92          | 108          |
| 40-45                     | 16.7f             | 7.0g         | 0.3          | 0.5          | 24.5                         |              |                | 22.8                |             |                                              |              |              |              |              | 2.4        |                 | -           |              |
| 45-49                     | 14.4f             | 5.58         | 0.3          | 0.4          | 20.6                         |              |                | 18.2                |             |                                              |              |              |              |              | 2,6        | L               |             |              |
| 49-61                     | 14.7f             | 5.98         | 0.3          | 0.5          | 21.4                         |              |                | 17.4                |             |                                              |              |              |              |              | 2.5        | [ · · · · · · · |             |              |
| 61-72                     | 13.1f             | 5.lg         | 0.3          | 0.5          | 19.0                         |              |                | 16.5                |             |                                              | 1700         | 0.76         | 43.6         | 490          | 2.6        |                 |             |              |
|                           |                   |              | 0-           |              |                              | l -          | <u> </u>       | e comp              | •           | <u>                                     </u> |              |              | <u> </u>     | m d 1        | I          | 0.004           | 15          | <u> </u>     |
|                           | Detine 4          | O Clar       | ותא ז        | l .          |                              | ıa. Ca       | roonat         | e comp              | rıses       | エ to り                                       | perce        | nt of        | une sa       | na bet       | ween 4     | O STICE         | ייד ני≁י    | mes,         |
|                           | Ratios t          | O CIG        | y ODI        | A++c-        | hard1/                       |              | 3 30 ±         | - ~ -               |             | 0.47 +16                                     | ~ ~~~        | halo-        | . hs :-      | chac         |            |                 |             |              |
| Depth                     | NHLOAc            | Ext.         | 15-Bar       | Atter<br>4F1 | berg <sup>1</sup> /<br>  4F2 | an           | d 10 t         | o 20 p<br>e: 27.    | ercent      | of th                                        | e sand       | below        | , 45 in      | ches.        |            |                 |             |              |

- Pe t 49 0.01 0,44 0-6 0.96 0.93 0.8<u>7</u> 6-10 0.01 0.44 10-14 14-20 0.01 0.45 0.84 0.01 0.43 0.79 0.01 0.42 20-26 59 35 26-32 32-40 0.72 0.01 0.43 0.74 0.76 0.02 0.44 40-45 0.02 0.47 0.49 45-49 0.73 0.59 0.64 0.03 49-61 0.51 40 61-72 0.03 21
- Lmit Indx d. Calculated to include volume but not weight of 2-19 mm material (Method 3B2).
  - e. Estimated.

  - e. Estimated.

    f. KC1-TEA extract (Method 6N4b).

    g. KC1-TEA extract (Method 6O4b).

    h. Resistivity of fine-and medium-textured soils measured at saturation is similar to that measured at moisture equivalent. Resistivity at saturation for coarse-textured soils is generally lower than that obtained at moisture equivalent.

    i. Iowa State Highway Commission data.

Pedon classification: Typic Haplaquol1; fine, montmorillonitic, mesic. Series classification: (Same as pedon).

Series classification: (same as psuom, soil: Marna silty clay loam.
Soil: Marna silty clay loam.
Soil no.: S64-lows-94-1 (ISL Nos. 19920 - 19930).
Location: Webster County, Iows; 1,041 feet south and 790 feet east of the NW corner of Sec. 25, T. 86 N.,

Vegetation and land use: Alfalfa; cropland.

Parent material: About 40 inches of fine textured glacial sediments over glacial till.

Slope: Nearly level area in a nearly level to gently undulating till plain.

Poor.

Permeability: Slow.

7.

ACTION AND ADDRESS OF

£.78.1

Root distribution: Roots are abundant to 20 inches, common to 32 inches, and few below.

Described by: R. I. Dideriksen, C. S. Fisher, M. P. Koppen, G. T. Carlson, L. I. Harmon; September 14, 1964.

(Colors are for moist soil unless otherwise stated)

Apl 19920 0 to 15 cm (0 to 6 inches). Black (N 2/0) heavy silty clay loam; black (10YR 2/1) crushed; black (10YR 2/1) to very dark gray (10YR 3/1) dry; strong medium angular blocky structure parting to moderate fine subangular blocky; firm; clean sand grains are evident; the structure has some vertical orientation probably due to drying; slightly acid (pH 6.2); clear smooth boundary.

Ap2 19921 15 to 25 cm (6 to 10 inches). Color, texture, and structure similar to Ap1 horizon; firm; clean sand grains are evident; the structure is due to plow layer compaction and drying; slightly acid (pH 6.2); abrupt smooth boundary.

A12 19922 25 to 35 cm (10 to 14 inches). Color as above; moderate very fine granular and some very fine subangular blocky structure; friable; a few 1/8-inch or smaller pebbles; slightly acid (pH 6.2); clear smooth boundary.

B1 19923 35 to 50 cm (14 to 20 inches). Color and texture as above except dark gray (10YR 4/1) dry; moderate fine and very fine subangular blocky structure; firm; very few very fine soft brown (7.5YR 4/4) oxides; a few very dark gray (5Y 3/1) peds in the lower part of horizon; a few 1/8-inch and smaller pebbles; sand grains are evident; common inped tubular pores; neutral (pH 6.6); clear smooth boundary.

B21 19924 50 to 65 cm (20 to 26 inches). Olive gray (5Y 5/2) and dark gray (5Y 4/1) silty clay to clay; faces of peds very dark gray (10YR 3/1) to black (10YR 2/1); strong coarse prismatic structure parts to medium prismatic, then to strong fine and very fine subangular block; very firm; distinct continuous clay films; a few inped tubular pores; very few very fine soft dark brown (7.5YR 3/2) oxides; very few k-inch pebbles and some aand grains; neutral (pH 7.2); gradual smooth boundary.

822g 19925 65 to 80 cm (26 to 32 inches). Colors as above except faces of peds are very dark gray (5Y 3/1) about 70 percent) and black (10YR 2/1) (about 30 percent); silty clay; structure and consistence similar to B21 horizon; thick continuous clay films on the prisms and the subangular blocks; pores as above; very few very fine light olive brown (2.YS 5/4) to dark yellowish brown soft oxides; a few fine black soft oxides; a few fragments of shale and rotted stones; a few amd grains; prism faces are about 30° from the horizontal and appear to have fewer pores than vertical faces; neutral (pH 7.2); gradual smooth boundary.

B23g 19926 80 to 103 cm (32 to 40 inches). Colors similar to B22g horizon except faces of peds are about 50 percent olive gray (5Y 5/2), about 30 percent very dark gray (5Y 3/1), and about 20 percent black (10YR 2/1); heavy silty clay loam; common fine light olive brown (2.5Y 5/4) grading to yellowish brown (10YR 5/6) mottles; structure as above; firm; prisms have faces 30° from horizontal with thick continuous clay films; vertical faces have thin clay films and a somwhat grainy appearance; some of the larger prism faces have colors that are very dark gray (5Y 3/1) and black (10YR 2/1); smaller faces are olive gray (5Y 5/2) and very dark gray (10YR 3/1); many fine tubular pores; few fine black oxide concretions; a few 1-inch pebbles; mildly alkaline (pH 7.8); clear wavy boundary.

IIB31g 19927 103 to 115 cm (40 to 45 inches). Color similar to B23g horizon except some dark gray (5Y 4/1); light clay loam; mottles as above; weak coarse prismatic structure parting to weak medium to coarse subangular blocky structure; firm; a few pores coated with very dark gray (10YR 3/1) clay; many distinct tubular pores; some 1- to 1½-inch lime rocks; a few pebbles; a few shale rocks; come black oxides; glacial till; the vertical faces are high in lime; moderately alkaline (pH 7.9); weakly effervescent; gradual wavy boundary.

IIB32g 19928 115 to 125 cm (45 to 59 inches). Colors similar to IJB31g horizon, heavy losm, mottles and attracture



SOIL Marna silty clay loam SOIL Nos. S64 Towa-40-4 LOCATION Hamilton County, Iowa

SOIL SURVEY LABORATORY Lincoln, Nebraska LAB. Nos. 19931-19941 April 1968

|                   | Methods:                                         |                     |                          | ے ویہ۔۔. <u>.</u> |              |         |                      | Size clas    | s and parti | cie diameti                                      | er (mm)  | BAl        |           |              |             |                                                    |                  |         |
|-------------------|--------------------------------------------------|---------------------|--------------------------|-------------------|--------------|---------|----------------------|--------------|-------------|--------------------------------------------------|----------|------------|-----------|--------------|-------------|----------------------------------------------------|------------------|---------|
|                   |                                                  |                     | Total                    |                   | 1            |         |                      | Şand         | puili       | Şı                                               | it       | <u> </u>   |           |              |             | Coa                                                | rse fragme       | nts 2A  |
|                   | ·                                                |                     | l                        |                   | Very         |         |                      | Ī . I        | I           |                                                  |          |            |           |              |             | 382                                                | 3B1              | Ţ       |
| Depth             | Horizon                                          | Sand                | Silt                     | Clay              | coarse       | Coarse  | Medium               | Fine         | Very fine   |                                                  | Int, III | Int II     |           |              | 0.005       | 2-19                                               | 2-1,9            | !       |
| (ln.)             |                                                  | (20.05)<br><u>a</u> | (0.05 <u>-</u><br>0 002) | ( < 0 002)        | (2-1)        | (1-0 5) | (0.5-0.25)           | (0.25-0 1)   | (0.1=0.05)  | 0 05-0 02                                        | (0.02-   | (0 2-0.02) | (2-0 1)   | <0.074       | 0.002       | (vol.                                              | ](wt.)           | 1       |
|                   |                                                  | <u>, ~</u>          |                          | _                 |              |         | of <b>&lt;</b> ≤ 2 ı |              |             |                                                  |          |            |           |              |             | ← Pct. •                                           | of < 1           | 9mm –   |
| 0-6               | Apl                                              | 15.5                | 46.7                     | 37.8              | 1.1          | 5.1     | 2.6                  | 5.2          | 4.5         | 17.4                                             | 29.3     | 24.9       | 11.0      | 87.3         |             |                                                    | tr               | ì       |
| 6-9               | Ap2                                              | 15.0                | 45.7                     | 39.3              | 0.5          | 2.0     | 2,4                  | 5.6          | 4.5         | 15.3                                             | 30.4     | 23.1       | 10.5      | 87.7         |             |                                                    | tr               |         |
| . 9 <u>-16</u>    | A12                                              | 10.5                | 47.3_                    | 42.2              | 0.4          | 1.3     | 1.6                  | 3.8          | 3.4         | 15.4                                             | 31.9.    | 21.0       | 7.1       | 91 <u>.6</u> | <u> </u>    |                                                    | tr               |         |
| 16-21             | Bl                                               | 10.5                | 46.0                     | 43.5              | 0.4          | 1.3     | 1.5                  | 3.7          | 3.6         | 15.6                                             | 30.4     | 21.4       | 6.9       | 91.9         |             |                                                    | tr               |         |
| 21-29             | B21g                                             | 9.4                 | 44.7                     | 45.9              | 0.4          | 1.1     | 1.3                  | 3.3          | 3.3         | 13.5                                             | 31.2     | 18.7       | 6.1       | 92.7         |             |                                                    | tr               |         |
| 29-34             | B22g                                             | 13.4                | 40.2                     | 46.4              | 0.7          | 1.7     | 2.0                  | 4.8          | 4.2         | 11.1                                             | 29.1     | 18.0       | 9.2       | 89.2         | .10.1       |                                                    | tr               |         |
| 34-38             | B23g                                             | 21.1                | 38.9                     | 40.0              | 1.2          | 2.8     | 3.3                  | 7.8          | 6.0         | 10.2                                             | 28.7     | 20.6       | 15.1      | 82.4         |             | _                                                  | 3<br>5           |         |
| 38-49 I<br>49-56  | B31g&B32g                                        | 23.7<br>23.2        | 42.5                     | 33.8              | 1.8          | 3.6     | 3.7.                 | 8.1          | 6.5         | 11.4                                             | 31.1     | 22.4       | 17.2      | 80.1         | 300         | 2                                                  | 5                |         |
| <del>56-</del> 68 | IIB33                                            |                     | 42.6                     | 34.2              | 2.0          | 3.4     | 3.7                  | 8.0          | 6.1         | 10.2                                             | 32.4     | 20.9       | 17.1      | 80.3<br>77.2 | 12.2        | -5                                                 |                  | ├       |
| 68-80             | IIB34                                            | 27.2<br>26.4        | 45.8<br>46.0             | 27.0              | 2.1          |         | 4.3<br>4.4           | 9.3          | 7.4         |                                                  | 32.8     | 24.7       | 19.0      | 77.8         |             | 7                                                  | 5<br>7           |         |
| 00-00             | IIC                                              | 20.4                | 40.0                     | 27.6              | 1.0          | 3.9     | 4.4                  | 9.3          | 1.2         | 12.3                                             | 33-7     | 24.1       | 19.2      | 17.0         |             | 7                                                  | '                |         |
|                   | 6Ala                                             | _                   |                          | İ                 | Carbo        | nate    | i                    | Bulk densit  | ·<br>V      | 401                                              |          | ater conte | nt        |              | 3A2b        |                                                    | pH               |         |
|                   | l                                                |                     |                          | Ext.              | as Ca        |         | -                    | 4Ald         | ,<br>  4А1Ъ |                                                  | 4Blc     | 4B2        | <br>  4C1 |              | Fine        |                                                    | T                | BCI.    |
| Depth             | Organic                                          | Nitrogen            | C/N                      | Iron              | 6Elb         | 3Ala    | 1/3-                 | 1/3-         | Air-        |                                                  | 1/3-     | 15-        | 1/3- to   | ,            | clay        |                                                    |                  |         |
| (łn )             | carbon<br><u>b</u>                               |                     |                          | as                | 6E2a         | ∞.∞2    | Bar                  | Bar          | Dry         | COLE                                             |          | Bar        | 15-Bar    |              | <0.0002     |                                                    |                  | (1.1    |
|                   | <u>~</u>                                         |                     | 1                        | Fe                | <2mm         | mm      | e                    |              |             |                                                  |          |            |           |              | mm          |                                                    |                  |         |
|                   | Pct                                              | Pct                 |                          | Pct.              | Pct          | Pct.    | g/cc                 | g/cc         | g/cc        |                                                  | Pct.     | Pct        | in√in.    |              | Pct.        |                                                    |                  |         |
| 0-6               | 4.03                                             |                     |                          |                   | i –          |         |                      | 1.26         | 1.56        | 0.073                                            | 30.5     | 16.9       | 0.17      |              | Ī           |                                                    | 1                | 5.7     |
| 6-9               | 3.77                                             |                     | 1                        |                   | 1            | 1       |                      | 1.29         | 1.58        | 0.068                                            | 29.5     | 16.7       | 0.17      |              |             |                                                    |                  | 5.7     |
| 9-16              | 2.60                                             |                     |                          |                   |              |         |                      | 1.28         | 1,58        | 0.073                                            | 28.0     | 18.0       | 0.13      | L            |             |                                                    | l                | 5.9     |
| 16-21             | 1.92                                             |                     |                          |                   | Ι —          |         |                      | 1.32         | 1.70        | 0.087                                            | 30.1     | 18.7       | 0.15      | Γ -          | 31.3        |                                                    |                  | 6.2     |
| 21-29             | 1.07                                             |                     |                          |                   |              |         |                      | 1.35         | 1.87        | 0.12                                             | 30.2     | 17.9       | 0.17      |              |             |                                                    |                  | 6.1     |
| 29-34             | 0.57                                             |                     |                          | L                 | <u>-(s)</u>  |         |                      | 1.39         |             | 0.11                                             | 27.5     | 17.6       |           |              | . 28.2      |                                                    | <u> </u>         | 6.      |
| 34 <b>-</b> 38    | 0.37                                             |                     |                          |                   | -(s)         |         |                      | 1.46         | 1.86        |                                                  | 25.2     | 15.4       | 0.14      |              |             |                                                    |                  | 7.2     |
| 38-49             | 0.23                                             |                     |                          |                   | 10           | -       | 1.44                 | 1.47         |             | 0.058                                            | 24.1     | 14.3       | 0.14      |              |             |                                                    |                  | 7.8     |
| 149-56            | 0.16                                             |                     |                          |                   | 17           | 1       | 1.57                 | 1.60         | 1.75        | 2.031                                            | 20,4     | 13.4       | 0.11      |              | <u>17.5</u> |                                                    |                  | 8.3     |
| 56-68             | 0.16                                             |                     |                          |                   | 18           | tr      | 1.56                 | 1.59         | 1.74        |                                                  | 20.9     | 11.9       | 0.14      |              |             |                                                    |                  | 8.0     |
| 68+80             | 0.18                                             |                     |                          |                   | 19           | tr      | 1.59                 | 1.66         | 1.78        | h.053                                            | 20.0     | 15.0       | 0.13      |              | Ì           | ì                                                  | )                | 8.3     |
|                   | <del>                                     </del> | Evtrantal           | ole bases 5              | . D1 o            | <del> </del> | 6нца    | Cet Par              | h. Cap.      | <del></del> |                                                  |          |            |           | l            | RD3         | <del>†                                      </del> | Base sat         | uration |
|                   | 6N2a                                             | 602a                | 6P2a                     | 692a              | 1            | Ext.    | 5A3a                 | 5Ala         | †           |                                                  |          |            |           |              | 0.00        |                                                    | 5C3              | 5C1     |
| Depth             | Onza                                             | 0024                | 0124                     | 0424              |              | Acid-   | Sum                  | '            |             |                                                  |          |            |           |              | Ca/Mg       |                                                    | Sum              |         |
| (in )             | Ca                                               | Mg                  | Na                       | K                 | Sum          | ity     |                      | NHLOAC       |             |                                                  |          |            |           |              | ′ –         |                                                    | Cations          | NHLOA   |
|                   | ·                                                | _                   |                          |                   |              | "       |                      | 4            |             |                                                  |          |            |           |              |             |                                                    |                  |         |
|                   | -                                                |                     | -                        | <u> </u>          | meq/100 g    | . —     |                      | -            |             |                                                  |          |            |           |              |             |                                                    | Pct              | Put     |
| 0-6               | 28,0                                             | 8.6                 | 0.1                      | 0,6               | 37.3         | 12.1    | 49.4                 | 38.0         |             |                                                  |          |            |           |              | 3.3         |                                                    | 76               | 98      |
| 6-9               | 27.1                                             | 8.8                 | 0.1                      | 0.6               | 36.6         | 12.1    | 48.7                 | 38.0         |             |                                                  |          |            |           |              | 3.1         |                                                    | 75               | 96      |
| 9-16              | 26.5                                             | 10.4                | 0.1                      | 0.6               | 37.6         | 9.6     | 47.2                 | 35.6         |             | L                                                | <u> </u> |            |           |              | 2.5         | Ļ <u></u>                                          | 80               | 100     |
| 16-21             | 26.4                                             | 11.5                | 0.1                      | 0.6               | 38.6         | 8.4     | 47.0                 | 36.8         |             |                                                  |          |            |           |              | 2.3         |                                                    | 82               | 109     |
| 21-29             | 25.7                                             | 12.6                | 0.1                      | 0.6               | 39.0         | 5.7     | 44.7                 | 35 - 3       |             |                                                  |          |            |           |              | 2.0         |                                                    | 87               | 110     |
| 29-34             | 23.4                                             | 12.3                | 0.2                      | 0.6               | 36.5         | 4.8     | 41.3                 | 31.3         |             |                                                  | <u>-</u> |            |           |              | 1.9         | <del></del>                                        | <u> </u>         | 117     |
| 34-38             | 21.4                                             | 11.3                | 0.2                      | 0.6               | 33.5         | 2,9     | 36.4                 | 29.2         |             |                                                  |          |            |           |              | 1.9         |                                                    | 98               | 177     |
| 38-49             | 16.6d                                            | 9.0e                |                          | 0.5               | 26.3         |         |                      | 23.5         |             |                                                  |          |            | 1         |              | 2.2         |                                                    |                  |         |
| 49-56<br>56 68    | 15.1d                                            | 6.8e                |                          | 0.5               | 22.6         |         | 1                    | 19.5<br>16.3 |             | <del>                                     </del> | +        |            |           |              | 2.2         | 1                                                  | <del>  -</del> - | t —     |
| 56-68<br>68-80    | 12.8d                                            | 5.8e<br>5.6e        |                          | 0.5               | 19.3         |         |                      | 16.5         |             |                                                  |          |            | l         |              | 2.0         |                                                    |                  |         |
| 00-00             | 11.40                                            | J.:00               | V.E                      | `.'               | - ' • '      |         | l                    |              |             | Į                                                | Į.       |            | l         |              | Į.          | l.                                                 |                  | 1       |
|                   | Ratios                                           | to Cla              | av 8dl                   |                   | Ţ            | a, Car  | bonate               | e comp       | rises :     | LO to :                                          | 20 per   | cent o     | f the :   | sand b       | elow 3      | 3 inch                                             | es.              |         |
|                   |                                                  | <u> </u>            | Ĭ                        | 1                 |              | ъ. 27   | $kg/m^2$             | to 60        | inches      | : (Met)                                          | hod 6A   | ).         |           |              |             |                                                    |                  |         |
| Depth             | NH40Ac                                           |                     | 15-Bar                   | :                 |              | c. Cal  | Lculate              | ed to i      | include     | volu                                             | me but   | not w      | eight o   | of 2-1       | 9 mm ı      | nateri                                             | e.l              |         |
| (In )             | CEC                                              | 1                   | Water                    | 1                 |              |         | thod (               |              |             |                                                  |          |            |           |              |             |                                                    |                  |         |
|                   |                                                  |                     |                          |                   |              |         |                      | extract      |             |                                                  |          |            |           |              |             |                                                    |                  |         |
|                   |                                                  |                     | <u> </u>                 | <u> </u>          |              | e. KC   | L-TEA                | extract      | t (Metl     | 10d 60                                           | 4ъ).     |            |           |              |             |                                                    |                  |         |
| 0-6               | 1.01                                             |                     | 0.45                     |                   |              |         |                      |              |             |                                                  |          |            |           |              |             |                                                    |                  |         |
| 6-9               | 0.97                                             | 1                   | 0.42                     | 1                 |              |         |                      |              |             |                                                  |          |            |           |              |             |                                                    |                  |         |
| 9-16              | 0.84                                             | L                   | 0.43                     | <u> </u>          | <b>↓</b>     | -       |                      |              |             |                                                  |          |            |           |              |             |                                                    |                  |         |
| 16-21             | 0.85                                             | 1                   | 0.43                     | 1                 |              |         |                      |              |             |                                                  |          |            |           |              |             |                                                    |                  |         |
| 21-29             | 0.77                                             |                     | 0,39                     |                   |              |         |                      |              |             |                                                  |          |            |           |              |             |                                                    |                  |         |
| 29-34             | 0,67                                             |                     | 0.38                     | -                 |              | -       |                      |              |             |                                                  |          |            |           |              |             |                                                    |                  |         |
| 34-38             | 0.73                                             |                     | 0.39                     |                   |              |         |                      |              |             |                                                  |          |            |           |              |             |                                                    |                  |         |
| 38-49             | 0.70                                             | 1                   | 0.,45                    | 1                 |              |         |                      |              |             |                                                  |          |            |           |              |             |                                                    |                  |         |
| 10-56             | 0.57                                             | ı                   | 0.50                     | 1                 | 1            | 1       |                      |              |             |                                                  |          |            |           |              |             |                                                    |                  |         |

0.44 0.43

0.57 0.60 0.60 Pedon <u>classification</u>: Typic Haplaquoli; fine, montmorillonitic, mesic. Series classification: (Same as pedon). Soil: Marna silty clsy loam.

Soil no.: S64-Iowa-40-4 (LSL Nos. 19931 - 19941).
Location: Hamilton County, Iowa; 297 feet east and 1,397 feet north of the SW Corner of Sec. 33, T. 87 N., R. 25 W.

Vegetation and land use: Clover; cropland.

Perent material: About 40 inches of fine textured glacial sediments over glacial till.

Slope: A slope of less than 1 percent on the slightly undulating Late Wisconsin till plain.

Slow. Permeability:

Root distribution: Roots were abundant to 16 inches, common from 16 to 34 inches, and very few below 34 inches. Described by: R. I. Dideriksen, C. S. Fisher, and M. P. Koppen.

(Colors are for moist soil unless otherwise stated)

Apl 19931 0 to 15 cm (0 to 6 inches). Black (N 2/0) heavy silty clay loam; black (10YR 2/1) when kneaded; black (10YR 2/1) to very dark gray (10YR 3/1) dry; cloddy with medium angular blocky structure in the lower part and some granular structure in the upper part; friable when moist, hard when dry; a few evident sand grains; slightly acid (pH 6.3); abrupt smooth boundary.

Ap2 19932 15 to 28 cm (6 to 9 inches). Color and texture like above; moderate medium angular blocky structure with a few fine subangular blocks and some weak fine granular structure; friable when moist, hard when dry; a few clean sand grains are evident; slightly acid (pH 6.3); clear smooth boundary.

A12 19933 23 to 40 cm (9 to 16 inches). Color and texture like above; moderate very fine subangular blocky structure; firm; low in sand (less than 20 percent) but grains are evident; root channels present but inped pores are few; slightly acid (pH 6.4); clear smooth boundary.

B1 19934 40 to 53 cm (16 to 21 inches). Black (N 2/0) light stilty clay; a few peds are very dark gray (10YR 3/1); black (10YR 2/1) to very dark gray (10YR 3/1) when kneaded; very dark gray (10YR 3/1) to dark gray (10YR 4/1) when dry; strong very fine subfangular blocky structure with some vertical cleavage; firm; thin discontinuous clay films; all peds have a sheen; few medium root channels and fine pores; common very fine dark brown soft oxides; low sand content (less than 20 percent); slightly acid (pH 6.4); clear smooth boundary.

B21t 19935 53 to 73 cm (21 to 29 inches). Dark gray (5Y 4/1) with about 20 percent olive gray (5Y 5/2) silty clay faces of peds very dark gray (10YR 3/1) with about 30 percent dark gray (5Y 4/1); very dark gray (10YR to 5Y 3/1) when kneaded; strong medium prismatic structure parting to moderate medium subangular blocky; very firm; a few black (10YR 2/1) coats on the prisms; the olive gray color increases with depth; thin continuous clay films and a few clay flows on the prisms; common very firm dark brown and a few black soft oxides; a few 30° cleavage faces; slightly acid (pH 6.5); clear smooth boundary.

B22g 19936 73 to 85 cm (29 to 34 inches). Olive gray (5Y 5/2) silty clay; faces of peds dark gray (5Y 4/1) with 30 percent olive gray (5Y 5/2); structure, and consistence like B21g horizon; clay films as above; distinct clay flows and fills along vertical faces; a few very dark gray (10YR 3/1) coats; common fine yellowish brown and strong brown soft oxides; some 30° cleavage faces acress the prisme; some increase in sand from above but probably less than 20 percent; neutral (pH 6.6); clear smooth boundary.

B23g 19937 85 to 98 cm (34 to 38 innhas). Color similar to B22g Borizon; light clay; weak medium prismatic structure parting to medium subangular blocky structure; firm; thin discontinuous clay films on vertical faces; common fine black and strong brown soft oxides; more pebbles than the horizon above; neutral (pH 6.7); clear amonth boundary.

IIB31g 19938 (sampled 38-49 inches) 98 to 110 cm (38 to 43 inches). Color similar to B23g horizon except faces are olive gray (5Y 5/2) with 40 percent dark gray (5Y 4/1); heavy clay loam; weak coarse prismatic structure parting to weak medium subangular blocky structure; firm; clay films less distinct than above; common fine yellowish brown and black soft oxides; distinct increase in pebbles and sand and contact with lime rock pebbles in the lower part; neutral (pH 7.2); gradual wavy boundary.

IIB32g 110 to 125 cm (43 to 49 inches). Mottled yellowish brown (10YR 5/6) and olive gray (5Y 5/2) medium clay loam; olive gray (5Y 5/2) with many fine yellowish brown (10YR 5/6) mottles on faces; structure like IIB31g horizon; friable to firm; many fine tubular pores; some dark gray (5Y 4/1) fills in pores and along some vertical faces; some pebbles; some 1/2-inch hard lime nodules; moderately alakline (pH 8.2+); strongly effervescent;

ITB33 19939 125 to 138 cm (49 to 56 inches). Color similar to IIB32g horizon but structure weaker; friable to firm; many fine tubular pores; some dark gray (5Y 4/1) coats in vertical pores; few black and strong brown soft oxides; maximum zone of lime segregation with lime oriented in pores and on vertical cleavage faces; fewer lime nodules than in the horizon above; common pebbles; old krotovina from horizon below extends into this horizon; moderately alkaline (pH 8.2+); strongly effervescent; diffuse smooth boundary.

IIB34 19940 138 to 168 cm (56 to 68 inches). Color and structure similar to IIB33 horizon; heavy loam; friable; very faw fine black soft oxides; some lime in vertical cleavage faces but less segregated lime than above; an old knotovina in this horizon, moderately alkaline (pH 8.2+); strongly effervescent; diffuse wavy boundary.

IIC 19941 168 to 203 cm (68 to 80 inches). Color similar to IIB33 horizon except less olive gray; heavy loam; massive; friable; the lima is not segregated; moderately alkaline (pH 8.2+); strongly effervescent.

Penetrometer readings were made by using a Soiltest penetrometer with a 5/16-inch head. The panetrometer was Penetrometer readings were made by using a Solitest penetrometer with a 5/10-inch head. Ine penetrometer was pushed horizontally into the freshly exposed wall of the sampling pit to a depth of 5 inches. Three readings were obtained at each vertical depth as follows: at 8 inches-67, £7, 61 pounds; at 13 inches-50, 52 pounds; at 18 inches-60, 67, 71 pounds; at 24 inches-62, 64 pounds; at 32 inches-65, 53, 64 pounds; at 46 inches-64, 59, 70 pounds; at 63 inches-54, 62, 52 pounds.

2-Marna silty clay loam

Soil temperatures were taken by inserting a Weston dial thermometer into the wall of the sampling pit. The depths c , temperatures are as follows: 20 inches --16.9°; 30 inches --16.1°; 40 inches --15.9°; 80 inches --13.6° C.

Mineralogy (Method 7A2). The clay mineralogy is similar for the B1, B22g and IIB33 horizons. A fairly well

SOIL Marshall silty clay loam SOIL Nos SSGIowa-15-1 LOCATION Cass County, Iowa \_ LAB. Nos \_\_18322-18330 Lincoln, Nebraska Мау 1967 SOIL SURVEY LABORATORY \_ General Methods: 1A, 1Blb, 2A1, 2B Size class and particle diameter (mm) 3A1 Total Sand Sitt Coarse fragments Silt Medium Fine Int. 1111 Sand Very fine Int. II Depth Horizon Clay Coarse 2 - 19 | 19 - 76 (1-0.5) | (0.5-0.25) | (0.25-0.1) | (0.1-0.05) | (0.05-0.02) | (0.02-0.02) | (In) (2-0 05) (0.05-(< 0.002)(0 2-0 02) (2-0 1) (2-1) Pct of \_\_\_\_ Pct 31.2 0.4 2.3a 69.1 0.1 0.1 0.2 1.9 1.6 37.9 39.9 35.6 \_ 33.9 33.2 31.1 31.2 7-16 A12 65.0 33.0 0.1 0.1 0.2 2.0a tr 0.4 16-23 23-28 35.1 33.4 0.1 0.1 1.8 2.2a tr 0.2 0.4 34.0 63.3 0.2 33.0 36.4 30.3 2.7a 0.1 0.2 0.3 1.9 0.8 35.1 -28-36 **B**22 64.3 32.5 0.4 2.4 27.9 28.1 3.2a tr 0.2 0.2 39.0 0.8 66.3 67.8 36-44 B23 3.6a 0.1 0.2 38.2 0.3 3.0 0.6 44-52 28.3 3.7a 0.1 0.1 0.2 3.3 39.5 42.9 0.4 67.4 52-60 B32 3.4ь 29.2 0.1 0.1 0.2 28.3 42.2 tr 39.1 40.0 0.4 60-72 3.6b 68.9 27.5 3.3 43.4 0.1 0.2 28.9 tr 0.3 6Ala 6Bla Bulk density Water content ρН 6E2a 602a 4 Di Ext. 4Ala 4Ald 4A16 4B4 4Blc 482 4C1 8Cla Organic Nitrogen Carbonate Field-1/3-COLE Field- 1/3-Iron Air-15~ as CaCO<sub>3</sub> 1/3-to carbon (1.1) State Bar Dry Bar 15-Bar State Bar as Fe in./in Pct Pct Pct Pct Pct Pet 0.024 25.3 5.5 5.7 0-72.46 0.189 13 1.0 1.34 1.34 1.44 25.2 12.5 0.17 7-16 2.14 0.172 12 1.1 1.19 1.16 1.28 0.032 29.0 32.7 14.0 0.22 0.040 28.5 32.4 28.5 16-23 1.61 0.142 1.22 1.19 1,34 14.6 0.21 5.9 1.24 11 23-28 1.00 0.093 1.3 1.26 1.42 0.047 28.2 15.7 5.9 6.0 28-36 0.58 0.062 9 1.4 1.28 1.28 1.45 0.044 26.9 28.1 15.2 36-44 44-52 1.38 0.33 1.2 1.33 1.48 0.036 20.6 27.1 14.6 0.17 6.1 1.46 26.3 27.4 1.3 1.32 0.036 22.5 14.0 0.16 6.2 14.1 52-60 0.15 1.2 1.36 1.32 1.46 0.036 25.1 0.18 6.4 28.3 -(s) 1.42 0.028 26.7 13.7 0.19 6.5 8Bla Resist Elec. бИІа Cat. Exch. Cap. 6Pla 5D2 8B 8**D**3 Base saturation 6N2a 602a 6P2a 6@2a Ext. 5A3a | 5A1a So1. Exch. Water 5¢3 501 Cond. Na Acidity Sum NH<sub>U</sub>OAc ivity Na at Ca/Mg Sum NH<sub>1</sub>OAc (fin.) Ca Na Sum lations ₫ Sat. Settions Pct. mmhos me /1. Pct. ohms Pct 12.4 0.8 29.9 33.4 32.0 32.0 12.7 0-7 4.0 17,2 121.2 58 81 7-16 64 68 24.0 15.4 5.5 0.1 0.5 21.5 11.9 2.8 90 16-23 14.8 0.10.7 21.7 10.3 2.4 23-28 8.6 73 76 15.5 0.1 0. 23.4 2.2 7.5 6.2 28-36 15.7 8.0 24.2 31.7 7.6 0.1 23.3 2.1 104 36-44 44-52 7.5 7.4 29.5 2800 0.29 0.8 55.5 15.0 0.1 0.7 23.3 22.1 0.3 2.0 **7**9 105 14.6 5.5 4.8 80 0.1 lo.6 22.7 121.4 2.0 106 52-60 15.4 7-7 28.7 0.6 0.2 23.9 22.0 2.0 83 109 60-72 0.7 <u> 15,0</u> 0.2 23.4

Pedon classification: Typic Hapludoll; fine-silty, mixed, mesic.

Series classification: (Same as pedon).

Soil: Marshall silty clay loam.

Soil no.: S63-Iowa-15-1 (LSL Nos. 18322 - 18330).

Location: Cass County, Iowa, 642 feet south of road center and 719 feet east of the NW corner of the NW SE4 sec. 34, T. 77 N., R. 37 W., (approximately 3 miles northwest of Atlantic, Iowa).

Vegetation and land use: Clover; cropland.

Parent material: Wisconsin loess.

Physiography: Moderately broad (about 1/4 mile wide) upland divide. Appears to be 1/2-to 1 foot lower than the highest elevation within the watershed.

Slope: Less than I percent towards the west or southwest.

Drainage: Well drained.

Moisture: Moist at 0 to 36 inches and below 48 inches but somewhat dry at about 36 to 48 inches.

Permeability: Moderate.

Ground water: Below 72 inches.

Root distribution: Roots common from 0 to 23 inches, few from 23 to 52 inches, nearly absent below 57 inches. Described by: R. I. Dideriksen and W. M. Jury

(Colors are for moist soil unless otherwise stated)

Ap 18322 0 to 18 cm (0 to 7 inches). Black (10YR 2/1) light silty clay loam, dark gray (10YR 4/1) when dry; black (10YR 2/1) to very dark brown (10YR 2/2) when kneaded; weak medium subangular blocky structure parting to weak fine granular structure; friable; common fine and medium root channels; weak plow sole at 6 to 7 inches; medium acid (pH 5.6); abrupt smooth boundary.

Al2 18323 18 to 40 cm (7 to 16 inches). Black (10YR 2/1) light silty clay loam, dark gray (10YR 4/1) when dry; black (10YR 2/1) to very dark brown (10YR 2/2) when kneaded; very weak fine subangular blocky and moderate fine granular structure; friable; common fine and medium root channels; medium acid (pH 5.8) gradual smooth boundary.

A3 18324 40 to 58 cm (16 to 23 inches). Very dark brown (10YR 2/2) with some very dark grayish brown (10YR 3/2) light to medium silty clay loam, dark gray (10YR 4/1) and dark grayish brown (10YR 4/2) when dry; very dark grayish brown (10YR 3/2) when kneaded; weak fine subangular blocky structure; friable; few fine and medium root channels; few moisture films on some peds; medium acid (pH 5.8) clear smooth boundary.

B21 18325 58 to 70 cm (23 to 28 inches). Brown (10YR 4/3) medium silty clay loam; pale brown (10YR 6/3) and light brownish gray (10YR 6/2) when dry; weak to moderate fine subangular blocky structure; faces of peds are brown (10YR 4/3) and very dark grayish brown (10YR 3/2) brown (10YR 4/3) when kneaded; friable; common fine and medium inped tubular pores; very few thin discontinuous clay films on some peds; very few, very fine soft dark brown accumulations of oxides; common 1/8-inch root fills of black material from above; medium acid (pH 6.0); clear smooth boundary.

B22 18326 70 to 90 cm (28 to 36 inches). Brown (10YR 4/3) medium silty clay loam; yellowish brown (10YR 5/4) when kneaded; weak medium prismatic structure parting to moderate fine subangular blocky; friable; few fine and medium inped tubular pores; very few, very fine soft dark brown accumulations of oxides; few thin discontinuous clay films on some peds; few black (10YR 2/1) root fills from above horizons; medium acid (pH 6.0); gradual smooth boundary.

B23 18327 90 to 113 cm (36 to 44 inches). Yellowish brown (10YR 5/4) light silty clay loam; common (5 percent) fine grayish brown (2.5Y 5/2) mottles; weak medium prismatic structure parting to moderate to weak medium subangular blocky; friable to firm; common fine inped tubular pores; very few thin discontinuous clay films on some vertical faces; few fine dark brown and yellowish brown soft accumulations of oxides; slightly acid (pH 6.2); gradual smooth boundary.

B31 18328 113 to 133 cm (44 to 52 inches). Mottled yellowish brown (10YR 5/4) and grayish brown (2.5Y 5/2) to olive gray (5Y 5/2) light silty clay loam to heavy silt loam; weak medium prismatic structure parting to weak medium and coarse subangular blocky; many fine brown (7.5YR 4/4) and yellowish brown (10YR 5/6) mottles; friable to firm; pores same as above; few thin indistinct silt coats and very few thin discontinuous clay films on some vertical faces; common very fine soft dark brown accumulations of oxides; slightly acid (pH 6.4); diffuse smooth boundary.

18329 133 to 153 cm (52 to 60 inches). Colors same as above but with a slight decrease in the brown (7.5YR 4/4) mottles; heavy silt loam; some vertical cleavage; friable; pores as above; few indistinct silt coats on alluminas formes and dos some as about benderes moutes?

SOIL Nos. S63Iowa-15-2 LOCATION Cass County, Iowa

SOIL SURVEY LABORATORY Lincoln, Nebraska

LAB. Nos. 18331-18341

May 1967

| + n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Silt   Int II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2A  Pet                                                               | -<br>-<br>-<br>-<br>-<br>-                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| + n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Silt   Int II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2A  Pet                                                               | 2A2 2 -19 Pct                                                                             |
| -002 (2<br>-003 (2<br>-004 (2<br>-005 (2<br>-00                                                                                                                                   | 2-002) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2 | Int III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 2-0 02   (2-0 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2A  Pet                                                               | 2A2 2 -19 Pct                                                                             |
| -002 (2<br>-003 (2<br>-004 (2<br>-005 (2<br>-00                                                                                                                                   | 2-002) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2 | 0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0  | 10 2-0 02   (2-0 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pet                                                                   | > 2 2-19   Pct                                                                            |
| -002 (2<br>-003 (2<br>-004 (2<br>-005 (2<br>-00                                                                                                                                   | 2-002) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2-0 02) (0 2 | 0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0 02   0  | 10 2-0 02   (2-0 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pet                                                                   | Pet Pet 76/10                                                                             |
| 0.8 0.8 0.9 0.4 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002    1002   | 1.4   27.9   40.8   0.5   1.1   28.4   38.3   0.4   1.5   28.6   37.8   0.5   1.7   27.8   39.8   0.8   1.1   30.4   41.4   0.5   1.4   28.3   43.1   0.5   1.2   29.1   41.4   0.6   1.6   27.7   44.3   0.5   1.3   29.9   43.0   0.4   1.4   28.4   43.3   0.4   1.4   28.4   43.3   0.4   1.5   28.7   42.9   0.2   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10   40.8   0.5   38.3   0.4   37.8   0.5   39.8   0.8   41.4   0.5   34.3   0.5   43.3   0.5   44.3   0.5   44.3   0.5   44.3   0.5   44.3   0.5   44.3   0.5   44.3   0.5   44.3   0.5   44.3   0.5   44.3   0.4   42.9   0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pet                                                                   | Pct                                                                                       |
| 7.8 c c c c c c c c c c c c c c c c c c c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.4 38.3 C 6.37.8 C 7.8 39.8 C 7.8 39.8 C 7.1 41.4 C 7.7 44.3 C 7.1 42.9 C 7.1 42.9 C 7.1 42.0 C 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7. | 1 28.4 38.3 0.4 5 28.6 37.8 0.5 7 27.8 39.8 0.8 1. 30.4 41.4 0.5 1.4 28.3 43.1 0.5 1.2 29.1 41.4 0.6 6 27.7 44.3 0.5 1.3 29.9 43.0 0.4 1.4 28.4 43.3 0.4 1.4 28.4 43.3 0.4 1.5 Eleid-1/3- 1.5 State Bar 1 1.5 Pet Pet 1 1.5 Pe | 38.3 0.4 3 38.3 0.4 3 39.8 0.8 3 39.8 0.8 41.4 0.5 3 43.1 0.5 44.3 0.5 44.3 0.5 44.3 0.5 44.3 0.4 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4c1<br>1/3-to<br>15-Bar<br>in/in.                                     | Pct                                                                                       |
| 7.8 c c c c c c c c c c c c c c c c c c c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.4 38.3 C 6.37.8 C 7.8 39.8 C 7.8 39.8 C 7.1 41.4 C 7.7 44.3 C 7.1 42.9 C 7.1 42.9 C 7.1 42.0 C 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7. | 1 28.4 38.3 0.4 5 28.6 37.8 0.5 7 27.8 39.8 0.8 1. 30.4 41.4 0.5 1.4 28.3 43.1 0.5 1.2 29.1 41.4 0.6 6 27.7 44.3 0.5 1.3 29.9 43.0 0.4 1.4 28.4 43.3 0.4 1.4 28.4 43.3 0.4 1.5 Eleid-1/3- 1.5 State Bar 1 1.5 Pet Pet 1 1.5 Pe | 38.3 0.4 3 38.3 0.4 3 39.8 0.8 3 39.8 0.8 41.4 0.5 3 43.1 0.5 44.3 0.5 44.3 0.5 44.3 0.5 44.3 0.4 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4c1<br>1/3-to<br>15-Par<br>in/in.                                     |                                                                                           |
| 7.8 c c c c c c c c c c c c c c c c c c c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.4 38.3 C 6.37.8 C 7.8 39.8 C 7.8 39.8 C 7.1 41.4 C 7.7 44.3 C 7.1 42.9 C 7.1 42.9 C 7.1 42.0 C 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7.1 27.1 1 7. | 1 28.4 38.3 0.4 5.5 28.6 37.8 0.5 7 27.8 39.8 0.8 1.1 30.4 41.4 0.5 1.4 28.3 43.1 0.5 1.2 29.1 41.4 0.6 27.7 44.3 0.5 1.3 29.9 43.0 0.4 28.7 42.9 0.2 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.3 0.4 3 38.3 0.4 3 39.8 0.8 3 39.8 0.8 41.4 0.5 3 43.1 0.5 44.3 0.5 44.3 0.5 44.3 0.5 44.3 0.4 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9 0.2 42.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4c1<br>1/3-to<br>15-Par<br>in/in.                                     |                                                                                           |
| 7.8 C 9.8 C 9.8 C 9.8 C 9.8 C 9.8 C 9.8 C 1.4 C 3.1 C 3.1 C 3.3 C 9.8 C 2.9 C  content Blc 4 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.6   37.8   6.8   39.8   6.9   39.8   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6.9   6   | .5 28.6 37.8 0.5 .7 27.8 39.8 0.8 .1 30.4 41.4 0.5 .4 28.3 43.1 0.5 .2 29.1 41.4 0.6 .2 27.7 44.3 0.5 .3 29.9 43.0 0.4 .4 28.4 43.3 0.4 .6 28.7 42.9 0.2  D1 Water content 494 491.6 492 LE Field-1/3- 15- State Par 1 .24 24.4 24.0 13.5 .268 28.1 27.1 13.7 .36 27.4 26.8 14.2 .332 27.3 25.4 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37.8   0.5   39.8   0.8   41.4   0.5   39.8   0.8   41.4   0.5   3   43.1   0.5   44.3   0.5   44.3   0.5   44.3   0.4   42.9   0.2     42.9   0.2     43.3   0.4   42.9   0.2     45.5   65.8   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.5   65.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4c1<br>1/3-to<br>15-Bar<br>in/in.                                     |                                                                                           |
| 9.8   Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .8 39.8 6 .4 41.4 6 .3 43.1 6 .1 41.4 6 .7 44.3 6 .4 43.3 6 .7 42.9 6 .4 43.3 6 .7 42.9 6 .1 127.1 1 .1 27.1 1 .4 26.8 1 .6 25.2 1 .9 26.8 1 .9 26.8 1 .9 26.8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .7 27.8 39.8 0.8 .1 30.4 41.4 0.5 .4 28.3 43.1 0.5 .2 29.1 41.4 0.6 .6 27.7 44.3 0.5 .4 28.4 43.3 0.4 .6 28.7 42.9 0.2  D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 430.8   0.8   41.4   0.5   3   43.1   0.5   41.4   0.6   44.3   0.5   43.0   0.4   42.9   0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4c1<br>1/3-to<br>15-Bar<br>in/in.                                     |                                                                                           |
| 1.4 C   3.1 C   3.1 C   3.1 C   3.3 C   3.3 C   3.3 C   3.3 C   3.4 C   4 C   4 C   4 C   4 C   5 C   5 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   6 C   7 C   6 C   6 C   6 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C   7 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14   1.4   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 30.4 41.4 0.5 .2 29.1 41.4 0.6 .6 27.7 44.3 0.5 .3 29.9 43.0 0.4 .4 28.4 43.3 0.4 .6 28.7 42.9 0.2  D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 41.4   0.5   3   43.1   0.5   41.4   0.6   7   44.3   0.5   9   43.0   0.4   42.9   0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4c1<br>1/3-to<br>15-Bar<br>in/in.                                     |                                                                                           |
| 3.1 C<br>1.4 C<br>1. | 3.3   43.1   C     1.1   41.4   C     1.7   44.3   C     1.9   43.0   C     1.4   43.3   C     1.4   43.3   C     1.4   43.3   C     1.5   42.9   C     1.6   1.7   1     1.6   1.7   1     1.7   1     1.8   26.8   1     1.9   26.8   1     1.9   26.8   1     1.9   26.8   1     1.9   26.8   1     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     1.9   26.8   2     2.9   26.8   2     2.9   26.8   2     2.9   26.8   2     2.9   26.8   2     2.9   26.8   2     2.9   26.8   2     2.9   26.8   2     2.9   26.8   2     2.9   26.8   2     3.9   26.8   2     4.9   26.8   2     5.9   26.8   2     5.9   26.8   2     5.9   26.8   2     5.9   26.8   2     5.9   26.8   2     5.9   26.8   2     5.9   26.8   2     5.9   26.8   2     5.9   26.8   2     5.9   26.8   2     5.9   26.8   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2     5.9   2       | 14 28.3 43.1 0.5 12 29.1 41.4 0.6 12 27.7 44.3 0.5 13 29.9 43.0 0.4 14 28.4 43.3 0.4 16 28.7 42.9 0.2  10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4c1 1/3-to 15-Bar                                                     |                                                                                           |
| 1.4 C<br>+.3 C<br>3.0 C<br>3.0 C<br>3.3 C<br>2.9 C<br>content<br>Blc 4<br>/3- 1<br>4.0 1<br>7.1 1<br>5.8 1<br>5.4 1<br>5.4 1<br>5.2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .2 29.1 41.4 0.6 .6 27.7 44.3 0.5 .3 29.9 43.0 0.4 .4 28.4 43.3 0.4 .6 28.7 42.9 0.2  D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 141.4   0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4c1<br>1/3-to<br>15-Par                                               | -<br>-<br>-<br>-                                                                          |
| content  alc 4  3- 1  4-3 C  content  alc 4  7-1 1  5-8 1  5-4 1  5-8 1  5-8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.7 44.3 C<br>1.9 43.0 C<br>1.4 43.3 C<br>1.4 43.3 C<br>1.7 42.9 C<br>Water content<br>4 4Bac 4<br>1.1d 1/3 1<br>1.2 24.0 1<br>1.4 24.0 1<br>1.4 26.8 1<br>1.6 25.4 1<br>1.6 25.2 1<br>1.9 26.8 1<br>1.9 26.8 1<br>1.9 26.8 1<br>1.9 26.8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .6 27.7 44.3 0.5<br>.3 29.9 43.0 0.4<br>.4 28.4 43.3 0.4<br>.6 28.7 42.9 0.2<br>D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44.3   0.5   43.0   0.4   42.9   0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4c1<br>1/3-to<br>15-Par                                               | -<br>-<br>-<br>-                                                                          |
| 3.0 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .03.3 .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,9   1,3,0   0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .3 29.9 43.0 2.4 .4 28.4 43.3 0.4 .6 28.7 42.9 0.2  D1 Water content  4B4 4B1c 4B2  EFIELD 1/3- 15- 1 State Bar Bar 1  Pct Pct Pct 1 024 24.4 24.0 13.5 028 28.1 27.1 13.7 036 27.4 26.8 14.2 0332 27.3 25.4 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0   43.0   Q.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 401<br>1/3-to<br>15-mr                                                |                                                                                           |
| content Blc 4/3- 1 ar E Pet 4.0 1 7.1 1 5.8 1 5.4 1 5.4 1 5.8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Water content  Water content  HANC  HANC  AL  AL  AL  AL  AL  AL  AL  AL  AL  A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14 28.4 43.3 0.4 28.7 42.9 0.2 D1 Water content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43.3   0.4   42.9   0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 401<br>1/3-to<br>15-Par<br>in/in.                                     | -   pH                                                                                    |
| content  Blc 4/3- 1  ar E  Pet  4.0 1  7.1 1  5.4 1  5.4 1  5.4 1  5.8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Water content  Water content  Hanc Hanc Hald 1/3- 1  te Bar Fet  1.1 27.1 1  1.4 26.8 1  1.3 25.4 1  1.6 25.2 1  2.9 26.8 1  1.2 26.8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mater content  Water content  HBA HBBC HB2  LE Field-1/3-15-1, State Bar Bar 1  Pet. Pet Pet 1  Pet. Pet Pet 1  224 24.4 24.0 13.5  228 28.1 27.1 13.7  26 27.4 26.8 14.2  332 27.3 25.4 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Water content   Water conten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 401<br>1/3-to<br>15-Par<br>in/in.                                     | -   pH                                                                                    |
| content Blc 4/3- 1 ar E 7.1 1 5.8 1 5.4 1 5.4 1 5.2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Water content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Water content   HBC      | Water content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/3-to<br>15-Bar<br>in√in.                                            |                                                                                           |
| Blc 4/3- 1<br>1/3- 1<br>2/3- 1<br>3/3- 1<br>5/4 1<br>5/4 1<br>5/4 1<br>5/8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hanc Hanc Hald 1/3- 1 te Bar Fet Fet 1.4 24.0 1 1.4 26.8 1 1.6 25.2 1 1.9 26.8 1 1.9 26.8 1 1.9 26.8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HB4 HB1c HB2 Field-1/3-15-1, State Bar Bar 1  Pet Pet Pet 1  024 24.4 24.0 13.5 036 27.4 26.8 14.2 036 28.0 25.4 14.3 032 27.3 26.4 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | #Bnc #B2 4cn 1/3- to Bar 15- Bar 15- Bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/3-to<br>15-Bar<br>in√in.                                            |                                                                                           |
| /3- 1 ar E  Pet  14.0 1 6.8 1 6.8 1 6.8 1 6.8 1 6.8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ald-1/3- 1<br>te Bar I<br>1.1 24.0 1<br>1.1 27.1 1<br>1.4 26.8 1<br>1.0 25.4 1<br>1.3 25.4 1<br>1.6 25.2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LE Field 1/3   15   15   17   17   17   18   18   18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 1/3-   15-   1/3- to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/3-to<br>15-Bar<br>in√in.                                            |                                                                                           |
| /3- 1 ar E  Pet  14.0 1 6.8 1 6.8 1 6.8 1 6.8 1 6.8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ald-1/3- 1<br>te Bar I<br>1.1 24.0 1<br>1.1 27.1 1<br>1.4 26.8 1<br>1.0 25.4 1<br>1.3 25.4 1<br>1.6 25.2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LE Field 1/3   15   15   17   17   17   18   18   18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 1/3-   15-   1/3- to   15- Bar   15- Bar   15- Bar   15- Bar   15- Bar   15- Bar   17- Bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/3-to<br>15-Bar<br>in√in.                                            |                                                                                           |
| er E  Pet  7.1 1  5.8 1  5.4 1  5.2 1  5.8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | te Bar Fet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | State Bar Bar 1<br>Pet. Pet Pet 1<br>024 24.4 24.0 13.5<br>028 28.1 27.1 13.7<br>036 27.4 26.8 14.2<br>25.4 14.3<br>032 27.3 25.4 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Par Bar 15-Bar  Pet Pet in/in.  24.0 13.5 0.15  27.1 13.7 0.16  26.8 14.2 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15-Bar<br>in/in.                                                      |                                                                                           |
| Pet 4.0 1 1 5.8 1 5.4 1 5.2 1 5.8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | et. Pet   14.0   1.1   24.0   1.1   27.1   1.4   26.8   1.0   25.4   1.3   25.4   1.6   25.2   1.9   26.8   1.2   26.2   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pet. Pet 1<br>124 24.4 24.0 13.5<br>128 28.1 27.1 13.7<br>136 27.4 26.8 14.2<br>137 25.4 14.3<br>132 27.3 25.4 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pct Pct in/in.  24.0 13.5 0.15  27.1 13.7 0.16  26.8 14.2 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in/in.                                                                | 1 1                                                                                       |
| 7.1 1<br>5.8 1<br>5.4 1<br>5.4 1<br>5.2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .4 24.0 1<br>.1 27.1 1<br>.4 26.8 1<br>.0 25.4 1<br>.3 25.4 1<br>.6 25.2 1<br>.9 26.8 1<br>.2 26.2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 024 24.4 24.0 13.5<br>028 28.1 27.1 13.7<br>036 27.4 26.8 14.2<br>036 28.0 25.4 14.3<br>032 27.3 25.4 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24.0   13.5   0.15   27.1   13.7   0.16   26.8   14.2   0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |                                                                                           |
| 7.1 1<br>5.8 1<br>5.4 1<br>5.4 1<br>5.2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .1 27.1 1<br>.4 26.8 1<br>.0 25.4 1<br>.3 25.4 1<br>.6 25.2 1<br>.9 26.8 1<br>.2 26.2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 024 24.4 24.0 13.5<br>028 28.1 27.1 13.7<br>036 27.4 26.8 14.2<br>036 28.0 25.4 14.3<br>032 27.3 25.4 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24.0   13.5   0.15   27.1   13.7   0.16   26.8   14.2   0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |                                                                                           |
| 7.1 1<br>5.8 1<br>5.4 1<br>5.4 1<br>5.2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .1 27.1 1<br>.4 26.8 1<br>.0 25.4 1<br>.3 25.4 1<br>.6 25.2 1<br>.9 26.8 1<br>.2 26.2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 028 28.1 27.1 13.7 036 27.4 26.8 14.2 036 28.0 25.4 14.3 032 27.3 25.4 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 27.1 13.7 0.16<br>26.8 14.2 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |                                                                                           |
| 5.4 1<br>5.4 1<br>5.2 1<br>5.8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .0 25.4 1<br>.3 25.4 1<br>.6 25.2 1<br>.9 26.8 1<br>.2 26.2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 036 27.4 26.8 14.2 036 28.0 25.4 14.3 032 27.3 25.4 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26.8 14.2 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                       |                                                                                           |
| 5.4 1<br>5.4 1<br>5.2 1<br>5.8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .0 25.4 1<br>.3 25.4 1<br>.6 25.2 1<br>.9 26.8 1<br>.2 26.2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 036 28.0   25.4   14.3  <br>032 27.3   25.4   14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25 1 11 2 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                       |                                                                                           |
| 5.4 1<br>5.2 1<br>5.8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .3 25.4 1<br>.6 25.2 1<br>.9 26.8 1<br>.2 26.2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 032   27.3   25.4   14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |                                                                                           |
| 5.2 1<br>5.8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .6   25.2   1<br>  1<br>  .9   26.8   1<br>  .2   26.2   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 136 26 6 25 2 12 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25.4 14.0 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                       |                                                                                           |
| 5.8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .9 26.8 1<br>.2 26.2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.4   14.0   0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |                                                                                           |
| 5.8   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .9 26.8 1<br>.2 26.2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .2 26.2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 14.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 1 - 2 - 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.8   12.0   0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.19                                                                  |                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.8 12.0 0.19<br>26.2 13.0 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.19                                                                  |                                                                                           |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28 26.2 26.7 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.8 12.0 0.19<br>26.2 13.0 0.17<br>2 26.7 14.2 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.19                                                                  |                                                                                           |
| י מוס                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.8 12.0 0.19<br>26.2 13.0 0.17<br>2 26.7 14.2 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.19                                                                  |                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 210 6010 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 028 26.2 26.7 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26.8 12.0 0.19<br>26.2 13.0 0.17<br>26.7 14.2 0.16<br>13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 0.19 0.17                                                           |                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28 26.2 26.7 14.2 13.4 13.4 8Bla 6Pla 5D2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.8 12.0 0.19<br>26.2 13.0 0.17<br>26.7 14.2 0.16<br>13.4 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8B 8B3                                                                | Base satur                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lec. Sol. E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 028 26.2 26.7 14.2 13.4 13.4 SBla 6Pla 5D2 ist Elec. Sol. Exch. V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.8 12.0 0.19<br>26.2 13.0 0.17<br>26.7 14.2 0.16<br>13.4 0 8B<br>2 Sol. Exch. Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.19<br>0.17<br>0.16<br>8B 8D3                                        | Base satur                                                                                |
| a   )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lec. Sol. E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 028 26.2 26.7 14.2 13.4 13.4 SBla 6Pla 5D2 ist Elec. Sol. Exch. V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.8 12.0 0.19<br>26.2 13.0 0.17<br>26.7 14.2 0.16<br>13.4 0.16<br>13.4 8B<br>2. Sol. Exch. Water<br>1. Na at (a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.19<br>0.17<br>0.16<br>0.16                                          | Base satur<br>503<br>Sum N                                                                |
| a   }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lec. Sol. E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 028 26.2 26.7 14.2 13.4 13.4 SBla 6Pla 5D2 ist Elec. Sol. Exch. V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.8 12.0 0.19<br>26.2 13.0 0.17<br>26.7 14.2 0.16<br>13.4 0 8B<br>2 Sol. Exch. Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.19<br>0.17<br>0.16<br>0.16                                          | Base satur                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tec. Sol. Ex<br>ond. Na 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 028 26.2 26.7 14.2 13.4 SEIa 6Pla 5D2 ist Elec. Sol. Exch. Va Cond. Na Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.8 12.0 0.19<br>26.2 13.0 0.17<br>26.7 11.2 0.16<br>13.4 0.16<br>14.4 0.16<br>1 | 0.19<br>0.17<br>0.16<br>0.16<br>8B 8D3<br>Water at Ca/Mg              | Base satur<br>503<br>Sum N                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tec. Sol. Ex<br>ond. Na 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 028 26.2 26.7 14.2 13.4 13.4 SBla 6Pla 5D2 ist Elec. Sol. Exch. V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.8 12.0 0.19 26.2 13.0 0.17 26.7 14.2 0.16 13.4 0.16 2 671a 512 8B 2 501. Exch. Water 1 Na Na at 3at. 3 me./1 Pet. Pct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.19<br>0.17<br>0.16.                                                 | Base satur<br>5C3<br>Sum N<br>Settions                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tec. Sol. Ex<br>ond. Na 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 028 26.2 26.7 14.2 13.4 SEIa 6Pla 5D2 ist Elec. Sol. Exch. Va Cond. Na Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.8 12.0 0.19 26.2 13.0 0.17 26.7 14.2 0.16 13.4 2 6712 512 8B 3 6712 512 8B 4 6712 512 8B 5 301. Exch. Water 1. Na at Sat. 3.me./1 Pct. Pct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.19<br>0.17<br>0.16.                                                 | Base satur<br>5C3<br>Sum N<br>Detions<br>Pct                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tec. Sol. Ex<br>ond. Na 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 028 26.2 26.7 14.2 13.4 SEIa 6Pla 5D2 ist Elec. Sol. Exch. Va Cond. Na Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.8 12.0 0.19 26.2 13.0 0.17 26.7 14.2 0.16 13.4 88 2 Sol. Exch. Water 1. Na Na at Sat. 3.me./l.Pet. Pct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8B 8D3 water at Ca/Mg Pet. 2.7 2.4                                    | Base satur<br>5C3<br>Sum N<br>Sations<br>Pet<br>60<br>68                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tec. Sol. Ex<br>ond. Na 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 028 26.2 26.7 14.2 13.4 SEIa 6Pla 5D2 ist Elec. Sol. Exch. Va Cond. Na Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.8 12.0 0.19 26.2 13.0 0.17 26.7 14.2 0.16 13.4 0.16 2 6P1a 5D2 8B 3. Sol. Exch. Water 1. Na Na at 3at. 3.me./1 Pet. Pet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8B 8D3 At Ca/Mg Pct. 2.7 2.4 2.3                                      | Base satur<br>5 C3<br>Sum N<br>Sations<br>Pct<br>60<br>68<br>69                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tec. Sol. Ex<br>ond. Na 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 028 26.2 26.7 14.2 13.4 SEIa 6Pla 5D2 ist Elec. Sol. Exch. Va Cond. Na Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.8 12.0 0.19 26.2 13.0 0.17 26.7 14.2 0.16 13.4 0.16 2 66Pla 512 8B 2 501. Exch. Water 3 t. Na Na at Ca 3.me./1 Pet. Pct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8B 8D3 Atter at Sat. Ca/Mg Pet. 2.7 2.4 2.3 2.0                       | Base satur<br>5 C3<br>Sum N<br>Detions<br>Pet<br>60<br>68<br>69<br>76                     |
| ./1.P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dec. Sol. Es<br>ond. Na I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 028 26.2 26.7 14.2 13.4 SELECTION NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26.8 12.0 0.19 26.2 13.0 0.17 26.7 14.2 0.16 13.4 2 66Pla 512 8B 2 Sol. Exch. Water 1. Na Na at Sat. 3.me./1.Pet. Pet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8B 8D3 kater at Sat. Ca/Mg  Pet. 2.7 2.4 2.3 2.0 1.9                  | Base satur<br>503 Sum N<br>Sations<br>Pet<br>60<br>68<br>69<br>76<br>80                   |
| ./1.P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dec. Sol. Es<br>ond. Na I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 028 26.2 26.7 14.2 13.4 SELECTION NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26.8 12.0 0.19 26.2 13.0 0.17 26.7 14.2 0.16 13.4 88 2 Sol. Exch. Water 1 Na Na at ca 3.me./l.Pet. Pct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8B 8D3 0.16  8B 8D3 Water at Ca/Mg Pet.  2.7 2.4 2.3 2.0 1.9 52.8 2.0 | Base satur<br>  5 C3   Svm   N   244 ons   Pet   60   68   69   76   80   82              |
| ./1.P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dec. Sol. Es<br>ond. Na I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 028 26.2 26.7 14.2 13.4 SELECTION NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26.8 12.0 0.19 26.2 13.0 0.17 26.7 14.2 0.16 13.4 0.16 2 66Pla 5D2 8B 2 501. Exch. Water at 3at. 3 me./1 Pet. Pet. 2 2 2 2 2 2 3 0 0.6 0.8 52.8 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8B 8D3 at Ca/Mg Ret. 2.7 2.4 2.3 2.0 1.9 52.8 2.0 1.9                 | Base satur   5 C3   Shm N   2 trions   Pct   60   68   69   76   80   82   82   82        |
| ./1.P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dec. Sol. Es<br>ond. Na I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 028 26.2 26.7 14.2 13.4 SELECTION NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26.8 12.0 0.19 26.2 13.0 0.17 26.2 13.4 0.16 13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8B 8D3 ca/Mg Pct. 2.7 2.4 2.3 2.0 1.9 2.0 1.9 2.0                     | Base satur                                                                                |
| ./1.P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dec. Sol. Es<br>ond. Na I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 028 26.2 26.7 14.2 13.4 SELECTION NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26.8 12.0 0.19 26.2 13.0 0.17 26.7 14.2 0.16 13.4 2 6712 512 8B 3 6712 512 8B 3 Sol. Exch. Water 3 t Sat. 3 me./1 Pet. Pet. 2 2 2 2 2 2 3 0 0.6 0.8 52.8 2 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8B 8D3 ca/Mg Sat.  Ca/Mg Pct.  2.7 2.4 2.3 2.0 1.9 2.0 1.9 2.0 1.9    | Base satur<br>503 Sum N<br>Sations<br>Pet<br>60<br>68<br>69<br>76<br>80<br>82<br>82<br>84 |
| ./1.P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dec. Sol. Es<br>ond. Na I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 028 26.2 26.7 14.2 13.4 SELECTION NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26.8 12.0 0.19 26.2 13.0 0.17 26.7 14.2 0.16 13.4 0.16 2 66.2 13.4 0.16 2 67.2 14.2 0.16 2 13.4 0.16 2 13.4 0.16 2 13.4 0.16 2 13.4 0.16 2 13.4 0.16 2 13.4 0.16 2 13.4 0.16 2 13.4 0.16 2 13.4 0.16 2 13.4 0.16 2 13.4 0.16 2 13.4 0.16 2 13.4 0.16 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2 13.4 0.17 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8B 8D3 ca/Mg Pct. 2.7 2.4 2.3 2.0 1.9 2.0 1.9 2.0                     | Base satur                                                                                |
| 7.7 1<br>1<br>Pla 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .2 26.7 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 032 23.9   26.8   12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       | 5 0.15                                                                                    |
| 5.7 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .2 26.7 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.9                                                                   | 3.5 0.15<br>3.9                                                                           |

|                | Ratios t                    | o Clay       | ( 8 m           |   |     |
|----------------|-----------------------------|--------------|-----------------|---|-----|
| Depth<br>(in.) | ne <sub>ll</sub> oac<br>cec | Ect.<br>Iron | 15-Bar<br>Water |   |     |
| 0-7            | 0.71                        | 0.036        | 0.44            |   |     |
| 7-13           | 0.69                        | 0.039        | 0.42            |   |     |
| 13-18          | 0.68                        | 0.042        | 0.43            |   | . , |
| 18-26          | 0.72                        | 0.044        | 0.45            |   |     |
| 26-34          | p.82                        | 0.047        | 0.50            |   |     |
| 34-41          | 0.79                        | 0.046        | 0.48            |   |     |
| 41-47          | p.77                        | 0.045        | 0.48            |   | -   |
| 47-58          | p.78                        | 0.047        | 0.43            |   |     |
| <u> 58-68</u>  | b.77                        | 0.048        | 0.48            |   |     |
| 68-72          | 0.77                        | 0.046        | 0.51            |   |     |
| 72-76          | p.77                        | 0.042        | 0.47            |   |     |
| I              | 1                           | 1            | i               | 1 | 1   |

a. Fe-Mn nodules: > 50 percent (2-0.1 mm), b. 15 kg/m² to 60 inches (Method 6A). c. Estimated. d. Saturated paste.

Pedon classification: Typic Hapludoll; fine-silty, mixed, mesic.

Series classification: (Same as pedon). Soil: Marshall silty clay loam.

Soil no.: S63-Iowa-15-2 (LSL Nos: 18331 - 18341).

Location: Cass County, Iowa, 829 feet south of road center and 500 feet east of the NW corner of the NW SE4 sec. 34, T. 77 N., R 37 W., (approximately 3 miles northwest of Atlantic, Iowa).

Vegatation and land use: Clover; cropland.

Parent material: Wisconsin loess.

Elevation: 3.02 feet lower in elevation than S63-Iowa-15-1 in Cass County transect.

Physiography: Somewhat stable position on the axis of a short interfluve which projects into a cove position formed by a forked hillside drainageway.

Slope: About 3 percent toward the west.

Drainage: Well drained.

Moisture: Moist at 0 to 41 inches and 58 to 76 inches but somewhat dry at 41 to 58 inches.

Permeability: Moderate.

Ground water: Below 76 inches.

Root distribution: Roots common from 0 to 26 inches, few from 26 to 58 inches, and nearly absent below.

Described by: R. I. Dideriksen and W. M. Jury.

(Colors are for moist soil unless otherwise stated)

Ap 18331 0 to 18 cm (0 to 7 inches). Black (10YR 2/1) to very dark brown (10YR 2/2) light silty clay loam, dark gray (10YR 4/1) to grayish brown (10YR 5/2) when dry; very dark brown (10YR 2/2) when kneaded; weak medium subangular blocky structure parting to weak fine granular; friable; common fine and medium root channels; few very dark grayish brown (10YR 3/2) wormcasts; medium acid (pH 5.8); clear smooth boundary.

18 to 33 cm (7 to 13 inches). Very dark brown (10YR 2/2) light silty clay loam, grayish brown (10YR 5/2) when dry; very dark brown (10YR 2/2) to very dark grayish brown (10YR 3/2) when kneaded; weak fine granular with some weak fine subangular blocky structure; friable; common fine and medium root channels; few wormcasts as above; medium acid (pH 5.8); gradual smooth boundary.

33 to 45 cm (13 to 18 inches). Very dark grayish brown (10YR 3/2) medium silty clay loam; grayish brown (107R 5/2) with some pale brown (107R 6/3) peds when dry; weak fine subangular blocky structure; friable; common fine inped tubular pores and some medium root channels; few peds, pore fills and wormcasts of brown (10YR 4/3); medium acid (pH 5.8); clear wavy boundary.

B21 18334 45 to 65 cm (18 to 26 inches). Brown (10YR 4/3) medium silty clay loam, same color kneaded, pale brown (10YR 6/3) when dry; weak to moderate fine subangular blocky structure; friable; pores as above; some oriented thin discontinuous very dark grayish brown (10YR 3/2) stains on a few peds; few black (10YR 2/1) fills in fine vertical channels; very few very fine soft dark brown accumulations of oxides; medium acid (pH 6.0); gradual smooth boundary.

B22 18335 65 to 85 cm (26 to 34 inches). Brown (10YR 4/3) light to medium silty clay loam; same color kneaded; weak medium prismatic structure parting to moderate fine subangular blocky; very few fine faint grayish brown (2.5Y 5/2) mottles; friable; many fine inped tubular pores; thin discontinuous clay films on some peds; few fine soft dark brown and yellowish brown accumulations of oxides; medium acid (pH 6.0); clear smooth boundary.

85 to 105 cm (34 to 41 inches). Yellowish brown (10YR 5/4) and brown (10YR 4/3) light silty clav B31 18336 losm; weak medium prismatic structure parting to moderate to weak medium subangular blocky; common fine grayish brown (2.5Y 5/2) and common fine yellowish brown (10YR 5/6) grading to brown (7.5YR 4/4) mottles; friable; pores as above; thin discontinuous clay films on vertical faces; oxides as above; slightly acid (pH 6.2); gradual smooth

832 18337 105 to 120 cm (41 to 47 inches). Mottled yellowish brown (10YR 5/4), grayish brown (2.5Y 5/2), and some brown (10YR 4/3) light silty clay loam; weak medium prismatic structure parting to weak medium subangular blocky; common fine yellowish brown (10YR 5/6) and brown (7.5YR 4/4) mottles; friable to firm; many fine and medium inped tubular pores; few thin discontinuous films on some vertical faces (may be clay); slight increase in grayish brown color in ped interiors; pores as above; very few very fine soft black accumulations of oxides: slightly acid (pH 6.4); gradual smooth boundary.

120 to 148 cm (47 to 58 inches). Color same as above except the grayish brown colors grade to olive gray (5Y 5/2) light silty clay loam to heavy silt loam; weak medium to coarse prismatic structure parting to weak medium subangular blocky structure; mottles as above; friable to firm; oxides and pores as above; very few indistinct silt coats on a few vertical faces; slightly acid (pH 6.6); diffuse smooth boundary.

C1 18339 148 to 173 cm (58 to 68 inches). Mottled yellowish brown (10YR 5/4 to 5/6) and olive gray (5Y 5/2) silt loam; massive with some vertical cleavage; friable; many fine and very fine tubular pores; few indistinct grainly silt coats on vertical faces; few fine soft dark brown to black accumulations of oxides; neutral (pH 6.8); clear smooth boundary.

C2 18340 173 to 183 cm (68 to 72 inches). Mottled brown (7.5YR 4/4), strong brown (7.5YR 5/6) and some olive gray (5Y 5/2) silt loam; massive with some vertical cleavage; friable; pores and silt coats as above; common fine soft dark brown to black accumulations of oxides; neutral (pH 6.8); clear smooth boundary.

C3 18341 183 to 193 cm (72 to 76 inches). Mottled dark yellowish brown (10YR 4/4), yellowish brown (10YR 5/6), and olive gray (5Y 5/2) silt loam; massive; friable; oxides as above; neutral (pH 7.0).

Remarks; Mottled subsoil has a higher percentage of olive gray colors but doesn't appear to be a distinct deoxidized zone; mottles from 26 inches plus, however, appear to be relict and related to the more gray zone below. The 68- to 72-inch layer represents a weak iron zone. At 18 to 26 inches there is faint tonguing of very dark grayish brown stains to 24 inches and about 6 inches wide in places; one 8-inch burrow hole filled with black soil material at 34 inches in pit 5 feet in diameter. Marshall soils \$63-Lowa-15-1, 15-2, and 15-3 were sampled in transect. Consistence is at moist field condition. See description for Marshall, S63-Iowa-15-1, for elevation transect.

Coarse fragments

рΗ

8cm (1.1)

5.6 5.6 6.0

5.9 5.9 5.9 6.0 6.1

6.4 6.4 6.5 6,5 7.0 Base saturation 5¢3

501 Sum NH<sub>4</sub>OAc Cetions Pct

Pct

88

93

99 100 101

105

107 110

109 108 107

64

68

74 78 80

81 ነበጵ

81

79 87

87 85 87

86 1,12 113 92

2 - 19 | 19 - 76 

Marshall silty clay loam SOIL Nos- 563 Iowa-15-3 LOCATION Cass County, Iowa SOIL y 1967

| (in) (in) (in) (in) (in) (in) (in) (in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                | Y LABORATO                                                                                                                                                            | KI                                                                                                                                                            |                                                                                         | Nebras                                                             |                                                                                                   |                                                                                           |                                                                                                                         |                                                                                                                         |             | LAB         | . Nos _ | 18342      | 2-18355  | 5      | M                                                           | hy 1         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------|-------------|---------|------------|----------|--------|-------------------------------------------------------------|--------------|
| Second   S   | wenerar                                                                                                                                                                                        | Methods;                                                                                                                                                              | 1A,                                                                                                                                                           | TELE,                                                                                   | 2A1, 2                                                             | . В                                                                                               |                                                                                           |                                                                                                                         | Size clas                                                                                                               | s and parti | cle diamete | er (mm) | 3A.        | L        |        |                                                             |              |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                                                                                                                                       |                                                                                                                                                               | Total                                                                                   |                                                                    |                                                                                                   |                                                                                           |                                                                                                                         | Sand                                                                                                                    |             | Şr          | lt      |            |          |        |                                                             | Ços          |
| 10-16   13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                | Horizon                                                                                                                                                               |                                                                                                                                                               |                                                                                         | (= 0 002)                                                          | coarse                                                                                            | (1-0 5)                                                                                   | (0 5-0 25)                                                                                                              | (0 25–0 1)                                                                                                              |             | 0 05–0 02   |         |            | (2-0 1)  |        |                                                             | 2A2<br>> 2   |
| 6-10 1.3 3 3.0 63.7 33.3 - tr 0.1 0.2 2.7 36.3 271.8 93.1 0.3 10.3 10.3 10.3 10.3 10.3 10.3 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - n-6                                                                                                                                                                                          | A120                                                                                                                                                                  | <del>-4</del>                                                                                                                                                 | 165 A                                                                                   | Í21 7                                                              | -                                                                                                 | Pc                                                                                        | t of <= 2                                                                                                               | mm                                                                                                                      |             |             |         |            | <u> </u> |        |                                                             | Pct,         |
| 10-15   22   2,9   65,6   31,3   - tr   0.1   0.2   2.6   56,6   20,2   23,3   0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                |                                                                                                                                                                       |                                                                                                                                                               |                                                                                         |                                                                    | <u>-</u>                                                                                          | 1                                                                                         |                                                                                                                         |                                                                                                                         |             | 39.5        |         |            |          |        |                                                             | -<br>-       |
| 133-25   282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                |                                                                                                                                                                       |                                                                                                                                                               |                                                                                         | 31.3                                                               | -                                                                                                 |                                                                                           |                                                                                                                         |                                                                                                                         |             |             |         |            |          |        |                                                             | _            |
| 2-3-28 331 3-0 6/4 39.6 - br 0.1 0.2 2.7 37.8 29.6 b0.6 0.3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                |                                                                                                                                                                       | 2.8                                                                                                                                                           |                                                                                         | 30.0                                                               | -                                                                                                 |                                                                                           |                                                                                                                         |                                                                                                                         |             |             | 30.3    |            |          |        | -                                                           | -            |
| 19-14  833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                |                                                                                                                                                                       |                                                                                                                                                               |                                                                                         |                                                                    | -                                                                                                 | 1                                                                                         |                                                                                                                         |                                                                                                                         |             |             | 29.6    |            |          |        |                                                             | -            |
| Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                |                                                                                                                                                                       |                                                                                                                                                               |                                                                                         |                                                                    | -                                                                                                 |                                                                                           |                                                                                                                         |                                                                                                                         |             |             |         |            |          | L.     |                                                             | -            |
| hg   hg   hg   hg   hg   hg   hg   hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14-47                                                                                                                                                                                          |                                                                                                                                                                       |                                                                                                                                                               |                                                                                         |                                                                    | _                                                                                                 | _                                                                                         |                                                                                                                         |                                                                                                                         |             |             |         |            |          |        |                                                             | -            |
| 53-50   C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 47-53                                                                                                                                                                                          |                                                                                                                                                                       |                                                                                                                                                               |                                                                                         |                                                                    | _                                                                                                 |                                                                                           |                                                                                                                         |                                                                                                                         |             |             |         |            |          |        |                                                             | _            |
| 59-60   G3   2.3   69.9   27.0   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53-58                                                                                                                                                                                          | 02                                                                                                                                                                    | 2.4                                                                                                                                                           | 71.0                                                                                    | 26.6                                                               |                                                                                                   |                                                                                           |                                                                                                                         |                                                                                                                         |             |             |         |            |          |        | <u></u>                                                     | <del>-</del> |
| G3-FG   G5   G2-h   T2-h   B2-y   -   tr   G1   G2-B   B3-h   B2-h   G3-h   B3-h   B3-h   G3-h   G   | 58-60                                                                                                                                                                                          |                                                                                                                                                                       |                                                                                                                                                               |                                                                                         |                                                                    | -                                                                                                 |                                                                                           |                                                                                                                         |                                                                                                                         | 2.2         | 39.1        |         | 41.4       |          |        |                                                             | -            |
| Section   Sect   |                                                                                                                                                                                                |                                                                                                                                                                       |                                                                                                                                                               |                                                                                         |                                                                    | -                                                                                                 |                                                                                           |                                                                                                                         |                                                                                                                         |             |             |         |            |          |        |                                                             | L            |
| Section   Sect   | 63-77                                                                                                                                                                                          | 8g                                                                                                                                                                    | 2:7                                                                                                                                                           | 行:#                                                                                     | 25:5                                                               | <del>-</del>                                                                                      | tr                                                                                        | 8:±                                                                                                                     | 8:2                                                                                                                     | 2:4         | 36:4        | 32.6    | 45:8       | 8:5      |        |                                                             | _            |
| Depth   Carbon   Depth   Dept   |                                                                                                                                                                                                | 6Ala                                                                                                                                                                  | 6Bla                                                                                                                                                          |                                                                                         |                                                                    | 6 <b>E</b> 2a                                                                                     | 6 <b>02</b> a                                                                             |                                                                                                                         | Bulk densit                                                                                                             |             |             | W       | ater conte |          |        |                                                             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Depth                                                                                                                                                                                          | Organic                                                                                                                                                               | Nitrogen                                                                                                                                                      | C/N                                                                                     |                                                                    | Carbonate                                                                                         | Ext.                                                                                      |                                                                                                                         |                                                                                                                         | 4Alb        |             | 434     | 4Blc       |          | 4Cl    |                                                             |              |
| Fet   Pat    |                                                                                                                                                                                                | carbon                                                                                                                                                                |                                                                                                                                                               |                                                                                         |                                                                    |                                                                                                   | as                                                                                        |                                                                                                                         |                                                                                                                         |             |             |         |            |          |        |                                                             |              |
| C-6   2.05   0.176   12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                | Pct                                                                                                                                                                   | Put                                                                                                                                                           |                                                                                         |                                                                    | Pct                                                                                               |                                                                                           | g/cc                                                                                                                    | g/cc                                                                                                                    | g/cc        |             | Pct     | Pct        | Put      | in./in |                                                             |              |
| 10-18 0.086 0.085 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                                                                                                                                       |                                                                                                                                                               |                                                                                         |                                                                    |                                                                                                   | 1.2                                                                                       |                                                                                                                         |                                                                                                                         |             | 0.028       |         |            |          |        |                                                             |              |
| 18-25   0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                |                                                                                                                                                                       |                                                                                                                                                               |                                                                                         |                                                                    |                                                                                                   |                                                                                           |                                                                                                                         |                                                                                                                         |             |             |         |            |          |        |                                                             |              |
| 25-32 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                |                                                                                                                                                                       |                                                                                                                                                               |                                                                                         |                                                                    |                                                                                                   |                                                                                           |                                                                                                                         |                                                                                                                         |             |             |         |            |          |        |                                                             |              |
| 32-39   0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                |                                                                                                                                                                       | 0.098                                                                                                                                                         | 9                                                                                       |                                                                    |                                                                                                   |                                                                                           |                                                                                                                         |                                                                                                                         |             |             | 28.4    | 20.1       |          |        |                                                             |              |
| 39-44   0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                |                                                                                                                                                                       |                                                                                                                                                               |                                                                                         |                                                                    |                                                                                                   |                                                                                           |                                                                                                                         |                                                                                                                         |             |             | 28.3    | 27.6       |          |        |                                                             |              |
| 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                |                                                                                                                                                                       |                                                                                                                                                               |                                                                                         |                                                                    |                                                                                                   |                                                                                           |                                                                                                                         |                                                                                                                         |             |             |         |            |          |        |                                                             |              |
| 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                |                                                                                                                                                                       |                                                                                                                                                               |                                                                                         |                                                                    |                                                                                                   |                                                                                           |                                                                                                                         |                                                                                                                         |             |             | 29.0    | 33.2       |          |        |                                                             |              |
| 58-60 0.08 60-61 0.07 1.00 1.3 1.3 1.30 1.30 1.40 0.024 28.6 29.1 13.2 0.21 1.3 1.30 1.30 1.40 0.024 28.6 29.1 13.2 0.21 1.3 1.39 1.32 1.45 0.022 28.9 28.8 13.4 0.20 1.45 0.022 28.9 28.8 13.4 0.20 1.45 0.022 28.9 28.8 13.4 0.20 1.45 0.022 28.9 28.8 13.4 0.20 1.45 0.022 28.9 28.8 13.4 0.20 1.45 0.022 28.9 28.8 13.4 0.20 1.45 0.022 28.9 28.8 13.4 0.20 1.45 0.022 28.9 28.8 13.4 0.20 1.45 0.022 28.9 28.8 13.4 0.20 1.45 0.022 28.9 28.8 13.4 0.20 1.45 0.022 28.9 28.8 13.4 0.20 1.45 0.022 28.9 28.8 13.4 0.20 1.45 0.022 28.9 28.8 13.4 0.20 1.45 0.022 28.9 28.8 13.4 0.20 1.45 0.022 28.9 28.8 13.4 0.20 1.45 0.022 28.9 28.8 13.4 0.20 1.45 0.022 1.45 0.40 1.45 0.022 1.45 0.40 1.45 0.45 0.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.45 1.45 0.45 0.45 0.  |                                                                                                                                                                                                |                                                                                                                                                                       |                                                                                                                                                               |                                                                                         |                                                                    |                                                                                                   |                                                                                           |                                                                                                                         |                                                                                                                         |             |             |         |            |          |        |                                                             |              |
| 1.0   1.3   1.36   1.30   1.40   0.024   28.6   29.1   13.2   0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                |                                                                                                                                                                       |                                                                                                                                                               |                                                                                         |                                                                    |                                                                                                   |                                                                                           | 1.30                                                                                                                    |                                                                                                                         | 1.43        | 0.020       | 25.3    | 21.9       |          | 0.20   |                                                             |              |
| -(s)   1.0   1.39   1.32   1.45   0.032   28.9   28.8   13.4   0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60-63                                                                                                                                                                                          | 0.07                                                                                                                                                                  |                                                                                                                                                               |                                                                                         |                                                                    |                                                                                                   |                                                                                           | l                                                                                                                       | 1.5                                                                                                                     |             |             |         |            | 14.0     |        |                                                             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63-69                                                                                                                                                                                          |                                                                                                                                                                       | ļ.*.                                                                                                                                                          |                                                                                         |                                                                    | , ,                                                                                               | 1.3                                                                                       |                                                                                                                         |                                                                                                                         |             |             |         |            |          |        |                                                             |              |
| Signar   S   | # <b>**</b> ***                                                                                                                                                                                | 0.05                                                                                                                                                                  |                                                                                                                                                               | <u> </u>                                                                                |                                                                    |                                                                                                   | _                                                                                         | _                                                                                                                       |                                                                                                                         | 1.45        | 0.032       |         |            |          |        |                                                             | <u> </u>     |
| Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Depth.                                                                                                                                                                                         | See                                                                                                                                                                   |                                                                                                                                                               |                                                                                         |                                                                    |                                                                                                   | Ext.                                                                                      | 5A3a                                                                                                                    | 5Ala                                                                                                                    |             |             | Elec    | Sol.       | Exch.    | Water  |                                                             |              |
| 0-6 13.4 5.6 0.1 0.7 19.8 11.0 30.5 22.4 2.2 10-18 14.1 6.3 0.1 0.6 21.1 10.1 31.2 22.8 2.8 2.1 10-18 14.5 7.0 0.1 0.5 22.1 7.6 29.7 22.4 2.1 10-18 14.9 7.6 0.2 0.6 23.3 5.8 29.1 23.1 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 2.0 12.5 | 444                                                                                                                                                                                            |                                                                                                                                                                       |                                                                                                                                                               |                                                                                         |                                                                    |                                                                                                   |                                                                                           |                                                                                                                         |                                                                                                                         |             |             |         |            |          |        |                                                             |              |
| 0-6 13.4 5.6 0.1 0.7 19.8 11.0 30.3 22.4 2.2 10-18 14.1 6.3 0.1 0.6 21.1 10.1 31.2 22.8 22.8 22.8 2.1 10-18 14.5 7.0 0.1 0.5 22.1 7.6 29.7 22.4 2.1 130.1 31.2 22.8 22.8 22.0 130.1 14.5 7.6 0.2 0.6 23.3 5.8 29.1 23.1 2.5 20.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | मसूत (                                                                                                                                                                                         | Ca                                                                                                                                                                    | ·Mg                                                                                                                                                           | Na                                                                                      | K                                                                  |                                                                                                   | Acidity                                                                                   | Sum<br>Dations                                                                                                          | NUT ONC                                                                                                                 |             |             |         | 14:3       | 14-2     |        | ou/ ng                                                      |              |
| 6-10 14.1 6.3 0.1 0.6 21.1 10.1 31.2 22.8 22.1 10-18 14.5 7.0 0.1 0.5 22.1 7.6 29.7 22.4 21.1 10-18 14.5 7.0 0.1 0.5 22.1 7.6 29.7 22.4 21.1 10-18 14.5 7.0 0.1 0.5 22.6 6.5 29.1 22.5 22.5 22.0 2.0 2.0 2.0 25.32 14.9 7.6 0.2 0.6 23.3 5.8 29.1 23.1 23.1 23.1 23.1 20.0 1.9 339-14 14.8 7.6 0.2 0.6 23.7 5.6 29.3 23.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | मकु€ (                                                                                                                                                                                         | Ca                                                                                                                                                                    | ' Mg                                                                                                                                                          | Na                                                                                      |                                                                    | Sum                                                                                               | Acidity                                                                                   | Sum<br>Detions                                                                                                          | ung oac                                                                                                                 |             | <u>a</u> .  |         |            |          | Set.   | oct/ Mg                                                     |              |
| 18-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>σ-6</u>                                                                                                                                                                                     | -<br>13.4                                                                                                                                                             |                                                                                                                                                               |                                                                                         | <u> </u>                                                           | Sum<br>meq/100 g                                                                                  |                                                                                           | Detions                                                                                                                 | · ·                                                                                                                     |             | <u>a</u> .  |         |            |          | Set.   |                                                             |              |
| 25-32   14.9   7.6   0.2   0.6   23.7   5.6   29.3   23.1   23.0   2.0   32-39   15.0   7.9   0.2   0.6   23.7   5.6   29.3   23.3   3.9   14.4   7   14.5   7.6   0.2   0.6   22.9   6.2   29.1   21.5   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1. | 0-6<br>6-10                                                                                                                                                                                    | 13.4<br>14.1                                                                                                                                                          | 5.6<br>6.3                                                                                                                                                    | 0.1                                                                                     | 0.7                                                                | Sum<br>meq/100 g<br>19.8<br>21.1                                                                  | 11.0                                                                                      | 30.8<br>31.2                                                                                                            | 22.4<br>22.8                                                                                                            |             | <u>a</u> .  |         |            |          | Set.   | 2.4                                                         |              |
| 32-39   15.0   7.9   0.2   0.6   23.7   5.6   29.3   23.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-6<br>6-10<br>10-18                                                                                                                                                                           | 13.4<br>14.1<br>14.5                                                                                                                                                  | 5.6<br>6.3<br>7.0                                                                                                                                             | 0.1<br>0.1<br>0.1                                                                       | 0.7<br>0.6<br>0.5                                                  | Sum<br>meq/100 g<br>19.8<br>21.1<br>22.1                                                          | 11.0<br>10.1<br>7.6                                                                       | 30.8<br>31.2<br>29.7                                                                                                    | 22.4<br>22.8<br>22.4                                                                                                    |             | <u>a</u> .  |         |            |          | Set.   | 2.4<br>2.2<br>2.1                                           |              |
| 39-14   14.8   7.6   0.2   0.6   23.2   5.6   28.8   22.0   1600   0.71   1.1   0.5   51.5   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1   | 0-6<br>6-10<br>10-18<br>18-25                                                                                                                                                                  | 13.4<br>14.1<br>14.5<br>14.6                                                                                                                                          | 5.6<br>6.3<br>7.0<br>7.3                                                                                                                                      | 0.1<br>0.1<br>0.1                                                                       | 0.7<br>0.6<br>0.5                                                  | Sum<br>meq/100 g<br>19.8<br>21.1<br>22.1<br>22.6                                                  | 11.0<br>10.1<br>7.6<br>6.5                                                                | 30.8<br>31.2<br>29.7                                                                                                    | 22.4<br>22.8<br>22.4<br>22.5                                                                                            |             | <u>a</u> .  |         |            |          | Set.   | 2.4<br>2.2<br>2.1<br>2.0                                    |              |
| 44-47   14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0-6<br>6-10<br>10-18<br>18-25<br>25-32                                                                                                                                                         | 13.4<br>14.1<br>14.5<br>14.6<br>14.9                                                                                                                                  | 5.6<br>6.3<br>7.0<br>7.3<br>7.6                                                                                                                               | 0.1<br>0.1<br>0.1<br>0.1                                                                | 0.7<br>0.6<br>0.5<br>0.6<br>0.6                                    | meg/100 g<br>19.8<br>21.1<br>22.1<br>22.6<br>23.3                                                 | 11.0<br>10.1<br>7.6<br>6.5<br>5.8                                                         | 30.8<br>31.2<br>29.7<br>29.1                                                                                            | 22.4<br>22.8<br>22.4<br>22.5<br>23.1                                                                                    | - 100aa     | <u>a</u> .  |         |            |          | Set.   | 2.4<br>2.2<br>2.1<br>2.0<br>2.0                             |              |
| 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0-6<br>6-10<br>10-18<br>18-25<br>25-32<br>32-39<br>39-44                                                                                                                                       | 13.4<br>14.1<br>14.5<br>14.6<br>14.9<br>15.0                                                                                                                          | 5.6<br>6.3<br>7.0<br>7.3<br>7.6<br>7.9                                                                                                                        | 0.1<br>0.1<br>0.1<br>0.1<br>0.2<br>0.2                                                  | 0.7<br>0.6<br>0.5<br>0.6<br>0.6<br>0.6                             | Sum<br>19.8<br>21.1<br>22.1<br>22.6<br>23.3<br>23.7                                               | 11.0<br>10.1<br>7.6<br>6.5<br>5.8<br>5.6                                                  | 30.8<br>31.2<br>29.7<br>29.1<br>29.1<br>29.3                                                                            | 22.4<br>22.8<br>22.4<br>22.5<br>23.1<br>23.3                                                                            | de logica   | d ohms      | mmhos   | me/1.      | Pct.     | Set.   | 2.4<br>2.2<br>2.1<br>2.0<br>2.0<br>1.9                      |              |
| 58-60 13.9 7.6 0.2 0.6 22.3 4.0 26.3 20.7 1.8 6.3-69 13.7 7.5 0.2 0.6 22.3 3.2 25.5 20.8 1.8 1.8 63-69 13.7 7.5 0.2 0.6 22.3 3.2 25.5 20.8 1.8 1.8 1.8 63-69 13.7 7.5 0.2 0.6 22.0 3.7 25.7 19.7 14.3 8.2 0.2 0.6 23.3 1.9 25.2 20.7 14.3 8.2 0.2 0.6 23.3 1.9 25.2 20.7 14.3 8.2 0.2 0.6 23.3 1.9 25.2 20.7 15.7 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-6<br>6-10<br>10-18<br>18-25<br>25-32<br>32-39<br>39-44<br>44-47                                                                                                                              | 13.4<br>14.1<br>14.5<br>14.6<br>14.9<br>15.0<br>14.8                                                                                                                  | 5.6<br>6.3<br>7.0<br>7.3<br>7.6<br>7.9<br>7.6                                                                                                                 | 0.1<br>0.1<br>0.1<br>0.1<br>0.2<br>0.2<br>0.2                                           | 0.7<br>0.6<br>0.5<br>0.6<br>0.6<br>0.6<br>0.6                      | meq/100 g<br>19.8<br>21.1<br>22.1<br>22.6<br>23.3<br>23.7<br>23.2<br>22.9                         | 11.0<br>10.1<br>7.6<br>6.5<br>5.6<br>5.6<br>6.2                                           | 30.8<br>31.2<br>29.7<br>29.1<br>29.1<br>29.3<br>28.8<br>29.1                                                            | 22.4<br>22.8<br>22.4<br>22.5<br>23.1<br>23.3<br>22.0<br>21.5                                                            | - 1-00a     | d ohms      | mmhos   | me/1.      | Pct.     | Set.   | 2.4<br>2.2<br>2.1<br>2.0<br>2.0<br>1.9<br>1.9               |              |
| 63-69 13.7 7.5 0.2 0.6 22.3 3.2 25.5 20.8 1.8 63-69 13.7 7.5 0.2 0.6 22.0 3.7 25.7 19.7 14.3 8.2 0.2 0.6 23.3 1.9 25.2 20.7 1.7 1.8 69-77 14.3 8.2 0.2 0.6 23.3 1.9 25.2 20.7 1.7 1.8 1.8 69-77 14.3 8.2 0.2 0.6 23.3 1.9 25.2 20.7 1.7 1.7 1.8 1.8 1.7 1.7 1.7 1.7 1.7 1.8 1.8 1.7 1.7 1.7 1.7 1.8 1.8 1.7 1.7 1.7 1.7 1.7 1.8 1.8 1.7 1.7 1.8 1.8 1.7 1.7 1.7 1.7 1.7 1.7 1.8 1.8 1.7 1.7 1.8 1.8 1.7 1.7 1.7 1.7 1.8 1.8 1.7 1.7 1.8 1.8 1.7 1.7 1.8 1.8 1.7 1.7 1.8 1.8 1.7 1.7 1.7 1.8 1.8 1.7 1.7 1.8 1.8 1.7 1.7 1.7 1.8 1.8 1.7 1.7 1.8 1.8 1.7 1.7 1.8 1.8 1.7 1.7 1.8 1.8 1.7 1.7 1.8 1.8 1.7 1.7 1.8 1.8 1.7 1.7 1.7 1.7 1.8 1.8 1.7 1.7 1.8 1.8 1.7 1.7 1.8 1.8 1.7 1.7 1.8 1.8 1.7 1.7 1.7 1.8 1.8 1.7 1.7 1.8 1.8 1.7 1.7 1.8 1.8 1.7 1.7 1.8 1.8 1.7 1.7 1.8 1.8 1.7 1.8 1.8 1.7 1.8 1.8 1.7 1.7 1.8 1.8 1.7 1.7 1.8 1.8 1.7 1.7 1.7 1.8 1.8 1.7 1.8 1.8 1.7 1.7 1.8 1.8 1.8 1.7 1.7 1.8 1.8 1.8 1.7 1.7 1.8 1.8 1.7 1.7 1.8 1.8 1.7 1.7 1.7 1.8 1.8 1.7 1.7 1.8 1.8 1.7 1.7 1.8 1.8 1.8 1.7 1.7 1.8 1.8 1.8 1.7 1.8 1.8 1.7 1.7 1.8 1.8 1.8 1.8 1.7 1.8 1.8 1.8 1.7 1.9 1.8 1.8 1.8 1.7 1.9 1.8 1.8 1.8 1.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.7 1.9 1.8 1.8 1.8 1.8 1.8 1.8 1.7 1.9 1.8 1.8 1.8 1.8 1.8 1.8 1.7 1.9 1.7 1.9 1.8 1.8 1.8 1.7 1.9 1.8 1.8 1.8 1.8 1.7 1.9 1.7 1.9 1.8 1.8 1.8 1.7 1.9 1.7 1.9 1.9 1.8 1.8 1.7 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-6<br>6-10<br>10-18<br>18-25<br>25-32<br>32-39<br>39-44<br>44-47<br>47-53                                                                                                                     | 13.4<br>14.1<br>14.5<br>14.6<br>14.9<br>15.0<br>14.8<br>14.5<br>14.5                                                                                                  | 5.6<br>6.3<br>7.0<br>7.3<br>7.6<br>7.9<br>7.6<br>7.6                                                                                                          | 0.1<br>0.1<br>0.1<br>0.2<br>0.2<br>0.2<br>0.2                                           | 0.7<br>0.6<br>0.5<br>0.6<br>0.6<br>0.6<br>0.6                      | meq/100 g<br>19.8<br>21.1<br>22.1<br>22.6<br>23.3<br>23.7<br>23.2<br>22.9<br>23.4                 | 11.0<br>10.1<br>7.6<br>6.5<br>5.6<br>5.6<br>6.2<br>3.5                                    | 30.8<br>31.2<br>29.7<br>29.1<br>29.3<br>28.8<br>29.1<br>26.9                                                            | 22.4<br>22.8<br>22.4<br>22.5<br>23.1<br>23.3<br>22.0<br>21.5<br>21.3                                                    |             | d ohms      | mmhos   | me/1.      | Pct.     | Set.   | 2.4<br>2.2<br>2.1<br>2.0<br>2.0<br>1.9<br>1.9<br>1.9        |              |
| Column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0-6<br>6-10<br>10-18<br>18-25<br>25-32<br>32-39<br>39-44<br>44-47<br>47-53<br>53-58                                                                                                            | 13.4<br>14.1<br>14.5<br>14.6<br>14.9<br>15.0<br>14.8<br>14.5<br>14.5                                                                                                  | 7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6                                                                                                          | 0.1<br>0.1<br>0.1<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2                                    | 0.7<br>0.6<br>0.5<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6               | Sum   meq/100 g   19.8   21.1   22.6   23.7   23.2   22.9   23.4   22.9                           | 11.0<br>10.1<br>7.6<br>6.5<br>5.6<br>5.6<br>6.2<br>3.5                                    | 30.8<br>31.2<br>29.7<br>29.1<br>29.3<br>28.8<br>29.1<br>26.9                                                            | 22.4<br>22.8<br>22.4<br>22.5<br>23.1<br>23.3<br>22.0<br>21.5<br>21.3                                                    |             | d ohms      | mmhos   | me/1.      | Pct.     | Set.   | 2.4<br>2.2<br>2.1<br>2.0<br>2.0<br>1.9<br>1.9<br>1.8        |              |
| Paties to Clay 8   Day   St.   | 0-6<br>6-10<br>10-18<br>18-25<br>25-32<br>32-39<br>39-44<br>44-47<br>47-53<br>53-58<br>53-58<br>60-63                                                                                          | 13.4<br>14.1<br>14.5<br>14.6<br>14.9<br>15.0<br>14.8<br>14.5<br>14.5<br>14.6<br>14.2                                                                                  | 5.6<br>6.3<br>7.0<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6                                                                                            | 0.1<br>0.1<br>0.1<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2                             | 0.7<br>0.6<br>0.5<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6        | meq/100 8<br>19.8<br>21.1<br>22.1<br>22.6<br>23.3<br>23.7<br>23.2<br>22.9<br>23.4<br>22.9<br>22.9 | 11.0<br>10.1<br>7.6<br>6.5<br>5.6<br>5.6<br>6.2<br>3.5<br>3.5                             | 30.8<br>31.2<br>29.7<br>29.1<br>29.1<br>29.3<br>28.8<br>29.1<br>26.9<br>26.4<br>26.3                                    | 22.4<br>22.8<br>22.4<br>22.5<br>23.1<br>23.3<br>22.0<br>21.5<br>21.3<br>21.0<br>20.7                                    |             | d ohms      | mmhos   | me/1.      | Pct.     | Set.   | 2.4<br>2.2<br>2.1<br>2.0<br>2.0<br>1.9<br>1.9<br>1.8<br>1.8 |              |
| Deeth (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-6<br>6-10<br>10-18<br>18-25<br>25-32<br>32-39<br>39-44<br>44-47<br>47-53<br>53-58<br>56-63<br>63-69                                                                                          | 13.4<br>14.1<br>14.5<br>14.6<br>14.9<br>15.0<br>14.8<br>14.5<br>14.6<br>14.2<br>13.9<br>13.7                                                                          | 5.6<br>6.3<br>7.0<br>7.3<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6                                                                                            | 0.1<br>0.1<br>0.1<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2                             | 0.7<br>0.6<br>0.5<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6 | Sum 19.8 19.8 21.1 22.1 22.6 23.3 23.7 23.2 22.9 23.4 22.9 22.3 22.3                              | 11.0<br>10.1<br>7.6<br>6.5<br>5.8<br>5.6<br>5.6<br>6.2<br>3.5<br>4.0<br>3.2               | 30.8<br>31.2<br>29.7<br>29.1<br>29.1<br>29.3<br>28.8<br>29.1<br>26.9<br>26.4<br>26.3<br>25.5                            | 22.4<br>22.8<br>22.4<br>22.5<br>23.1<br>23.3<br>22.0<br>21.5<br>21.3<br>21.0<br>20.7<br>20.8                            |             | d ohms      | mmhos   | me/1.      | Pct.     | Set.   | 2.4<br>2.2<br>2.1<br>2.0<br>2.0<br>1.9<br>1.8<br>1.8<br>1.8 |              |
| CEC Iron Water d. Saturated.  CEC Iron Water d. Saturated.  C. Estimated.  C. Est | 0-6<br>6-10<br>10-18<br>18-25<br>25-32<br>32-39<br>39-44<br>44-47<br>47-53<br>53-58-60<br>60-63<br>63-69                                                                                       | 13.4<br>14.1<br>14.5<br>14.6<br>14.9<br>15.0<br>14.8<br>14.5<br>14.6<br>14.2<br>13.9<br>13.7<br>14.3                                                                  | 7.6<br>7.6<br>7.9<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>8.2                                                                                            | 0.1<br>0.1<br>0.1<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2                      | 0.7<br>0.6<br>0.5<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6 | Sum 19.8 19.8 21.1 22.1 22.6 23.3 23.7 23.2 22.9 23.4 22.9 22.3 22.3                              | 11.0<br>10.1<br>7.6<br>6.5<br>5.8<br>5.6<br>5.6<br>6.2<br>3.5<br>4.0<br>3.2               | 30.8<br>31.2<br>29.7<br>29.1<br>29.3<br>28.8<br>29.1<br>26.9<br>26.4<br>26.3<br>25.5                                    | 22.4<br>22.8<br>22.4<br>22.5<br>23.1<br>23.3<br>22.0<br>21.5<br>21.3<br>21.0<br>20.7<br>20.8                            |             | d ohms      |         | me/1.      | Pet.     | Set.   | 2.4<br>2.2<br>2.1<br>2.0<br>2.0<br>1.9<br>1.9<br>1.8<br>1.8 |              |
| CEC 1701 water d. Saturated paste.  0-6 0.71 0.030 0.43 6-10 0.63 0.042 0.39 10-18 0.72 0.045 0.42 18-25 0.75 0.047 0.45 25-32 0.78 0.044 0.49 32-39 0.80 0.045 0.49 39-44 0.79 0.050 0.50 44-47 0.70 0.14 0.49 44-47 0.70 0.14 0.49 47-53 0.75 0.035 0.49 58-60 0.74 0.061 0.48 60-63 0.81 0.039 0.55 63-69 0.81 0.039 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0-6<br>6-10<br>10-18<br>18-25<br>25-32<br>32-39<br>39-44<br>44-47<br>47-53<br>53-58-60<br>60-63<br>63-69                                                                                       | 13.4<br>14.1<br>14.5<br>14.6<br>14.9<br>15.0<br>14.8<br>14.5<br>14.6<br>14.2<br>13.9<br>13.7<br>14.3                                                                  | 7.6<br>7.6<br>7.9<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>8.2                                                                                            | 0.1<br>0.1<br>0.1<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2                      | 0.7<br>0.6<br>0.5<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6 | Sum 19.8 19.8 21.1 22.1 22.6 23.3 23.7 23.2 22.9 23.4 22.9 22.3 22.3                              | 11.0<br>10.1<br>7.6<br>6.5<br>5.6<br>5.6<br>6.2<br>3.5<br>3.5<br>3.7<br>1.9               | 30.8<br>31.2<br>29.7<br>29.1<br>29.3<br>28.8<br>29.1<br>26.9<br>26.4<br>26.5<br>25.7<br>25.2                            | 22.4<br>22.8<br>22.4<br>22.5<br>23.1<br>23.3<br>22.0<br>21.5<br>21.3<br>21.0<br>20.7<br>20.8                            | ş: >        | d ohms      | 0.71    | me/l.      | Pet.     | Set.   | 2.4<br>2.2<br>2.1<br>2.0<br>2.0<br>1.9<br>1.9<br>1.8<br>1.8 | , -          |
| 6-10 0.68 0.042 0.39 10-18 0.72 0.045 0.42 18-25 0.75 0.047 0.45 25-32 0.78 0.044 0.49 32-39 0.80 0.045 0.49 39-44 0.70 0.14 0.49 47-53 0.75 0.035 0.49 53-58 0.79 0.035 0.49 58-60 0.74 0.061 0.48 60-63 0.81 0.039 0.55 63-69 0.81 0.039 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-6<br>6-10<br>10-18<br>18-25<br>25-32<br>25-32<br>39-44<br>44-47-53<br>477-53<br>58-60<br>60-63-69<br>69-77                                                                                   | 13.4<br>14.1<br>14.5<br>14.6<br>14.9<br>15.0<br>14.5<br>14.5<br>14.6<br>14.2<br>13.9<br>13.7<br>14.3<br>Ratios t                                                      | 7.6<br>7.9<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6                                                                              | 0.1<br>0.1<br>0.1<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2        | 0.7<br>0.6<br>0.5<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6 | Sum 19.8 19.8 21.1 22.1 22.6 23.3 23.7 23.2 22.9 23.4 22.9 22.3 22.3                              | 11.0<br>10.1<br>7.6<br>6.5<br>5.6<br>5.6<br>6.2<br>3.5<br>3.5<br>4.0<br>3.2<br>3.7<br>1.9 | 30.8<br>31.2<br>29.7<br>29.1<br>29.1<br>29.3<br>28.8<br>29.1<br>26.9<br>26.4<br>26.3<br>25.7<br>25.2<br>Fe-Mn<br>12 kg/ | 22.4<br>22.8<br>22.4<br>22.5<br>23.1<br>23.3<br>22.0<br>21.5<br>21.3<br>21.0<br>20.7<br>nodule                          | s: > 60 inc | d ohms      | 0.71    | me/l.      | Pet.     | Set.   | 2.4<br>2.2<br>2.1<br>2.0<br>2.0<br>1.9<br>1.9<br>1.8<br>1.8 |              |
| 6-10 0.68 0.042 0.39 10-18 0.72 0.045 0.42 18-25 0.75 0.047 0.45 25-32 0.78 0.044 0.49 32-39 0.80 0.045 0.49 39-44 0.79 0.050 0.50 44-47 0.70 0.14 0.49 47-53 0.75 0.035 0.49 53-58 0.79 0.036 0.49 58-60 0.74 0.061 0.48 60-63 0.81 0.039 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-6<br>6-10<br>10-18<br>18-25<br>25-32<br>25-32<br>39-44<br>44-47-53<br>477-53<br>58-60<br>60-63-69<br>69-77                                                                                   | 13.4<br>14.1<br>14.5<br>14.6<br>14.9<br>15.0<br>14.5<br>14.6<br>14.2<br>13.9<br>13.7<br>14.3<br>Ratios t                                                              | 7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6                                                                                            | 0.1<br>0.1<br>0.1<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 0.7<br>0.6<br>0.5<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6 | Sum 19.8 19.8 21.1 22.1 22.6 23.3 23.7 23.2 22.9 23.4 22.9 22.3 22.3                              | 11.0<br>10.1<br>7.6<br>6.5<br>5.6<br>5.6<br>6.2<br>3.5<br>4.0<br>3.2<br>1.9               | 30.8<br>31.2<br>29.7<br>29.1<br>29.1<br>29.3<br>28.8<br>29.1<br>26.9<br>26.4<br>26.3<br>25.7<br>25.2<br>Fe-Mn<br>12 kg/ | 22.4<br>22.8<br>22.4<br>22.5<br>23.1<br>23.3<br>22.0<br>21.5<br>21.3<br>21.0<br>20.7<br>20.7<br>20.7<br>nodule<br>m² to | 60 inc      | d ohms      | 0.71    | me/l.      | Pet.     | Set.   | 2.4<br>2.2<br>2.1<br>2.0<br>2.0<br>1.9<br>1.9<br>1.8<br>1.8 |              |
| 10-18 0.72 0.045 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0-6<br>6-10<br>10-18<br>18-25-32<br>25-32<br>32-39<br>33-44<br>44-7-53<br>53-58<br>60-63<br>63-69<br>69-77                                                                                     | 13.4<br>14.1<br>14.5<br>14.5<br>14.9<br>15.0<br>14.5<br>14.5<br>14.5<br>14.6<br>14.2<br>13.9<br>13.7<br>14.3<br>Ratios t                                              | 7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>8.2<br>6 Clay                                                                                  | 0.1<br>0.1<br>0.1<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 0.7<br>0.6<br>0.5<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6 | Sum 19.8 19.8 21.1 22.1 22.6 23.3 23.7 23.2 22.9 23.4 22.9 22.3 22.3                              | 11.0<br>10.1<br>7.6<br>6.5<br>5.6<br>5.6<br>6.2<br>3.5<br>4.0<br>3.2<br>1.9               | 30.8<br>31.2<br>29.7<br>29.1<br>29.1<br>29.3<br>28.8<br>29.1<br>26.9<br>26.4<br>26.3<br>25.7<br>25.2<br>Fe-Mn<br>12 kg/ | 22.4<br>22.8<br>22.4<br>22.5<br>23.1<br>23.3<br>22.0<br>21.5<br>21.3<br>21.0<br>20.7<br>20.7<br>20.7<br>nodule<br>m² to | 60 inc      | d ohms      | 0.71    | me/l.      | Pet.     | Set.   | 2.4<br>2.2<br>2.1<br>2.0<br>2.0<br>1.9<br>1.9<br>1.8<br>1.8 | -            |
| 18-25 0.75 0.047 0.45 25-32 0.78 0.044 0.49 32-39 0.80 0.045 0.49 33-44 0.79 0.050 0.50 44-47 0.70 0.14 0.49 47-53 0.75 0.035 0.49 53-58 0.79 0.038 0.49 58-60 0.74 0.061 0.48 60-63 0.81 0.039 0.55 63-69 0.81 0.054 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0-6<br>6-10<br>10-18<br>18-25<br>25-32<br>39-39<br>39-44<br>44-7-53<br>53-58<br>58-60<br>60-63<br>69-77                                                                                        | 13.4<br>14.1<br>14.5<br>14.5<br>14.9<br>15.0<br>14.5<br>14.5<br>14.6<br>14.2<br>13.9<br>13.7<br>14.3<br>Ratios t                                                      | 5.6<br>6.3<br>7.0<br>7.3<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>8.2                                                                | 0.1<br>0.1<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2        | 0.7<br>0.6<br>0.5<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6 | Sum 19.8 19.8 21.1 22.1 22.6 23.3 23.7 23.2 22.9 23.4 22.9 22.3 22.3                              | 11.0<br>10.1<br>7.6<br>6.5<br>5.6<br>5.6<br>6.2<br>3.5<br>4.0<br>3.2<br>1.9               | 30.8<br>31.2<br>29.7<br>29.1<br>29.1<br>29.3<br>28.8<br>29.1<br>26.9<br>26.4<br>26.3<br>25.7<br>25.2<br>Fe-Mn<br>12 kg/ | 22.4<br>22.8<br>22.4<br>22.5<br>23.1<br>23.3<br>22.0<br>21.5<br>21.3<br>21.0<br>20.7<br>20.7<br>20.7<br>nodule<br>m² to | 60 inc      | d ohms      | 0.71    | me/l.      | Pet.     | Set.   | 2.4<br>2.2<br>2.1<br>2.0<br>2.0<br>1.9<br>1.9<br>1.8<br>1.8 | -            |
| 32-39 0.80 0.045 0.49 39-44 0.79 0.050 0.50 44-47 0.70 0.14 0.49 47-53 0.75 0.035 0.49 53-58 0.79 0.038 0.49 58-60 0.74 0.061 0.48 60-63 0.81 0.039 0.55 63-69 0.81 0.054 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0-6<br>6-10<br>10-18<br>18-25<br>25-32<br>39-44<br>44-47<br>47-53<br>53-58<br>58-60<br>60-63<br>63-69<br>69-77                                                                                 | 13.4<br>14.1<br>14.5<br>14.6<br>14.9<br>15.0<br>14.8<br>14.5<br>14.6<br>14.6<br>14.2<br>13.9<br>13.7<br>14.3<br>Ratios t                                              | 5.6<br>6.3<br>7.0<br>7.3<br>7.6<br>7.9<br>7.6<br>0.0<br>7.9<br>7.6<br>7.6<br>7.6<br>8.2<br>0.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.         | 0.1<br>0.1<br>0.1<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 0.7<br>0.6<br>0.5<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6 | Sum 19.8 19.8 21.1 22.1 22.6 23.3 23.7 23.2 22.9 23.4 22.9 22.3 22.3                              | 11.0<br>10.1<br>7.6<br>6.5<br>5.6<br>5.6<br>6.2<br>3.5<br>4.0<br>3.2<br>1.9               | 30.8<br>31.2<br>29.7<br>29.1<br>29.1<br>29.3<br>28.8<br>29.1<br>26.9<br>26.4<br>26.3<br>25.7<br>25.2<br>Fe-Mn<br>12 kg/ | 22.4<br>22.8<br>22.4<br>22.5<br>23.1<br>23.3<br>22.0<br>21.5<br>21.3<br>21.0<br>20.7<br>20.7<br>20.7<br>nodule<br>m² to | 60 inc      | d ohms      | 0.71    | me/l.      | Pet.     | Set.   | 2.4<br>2.2<br>2.1<br>2.0<br>2.0<br>1.9<br>1.9<br>1.8<br>1.8 | -            |
| 39-44 0.79 0.050 0.50<br>44-47 0.70 0.14 0.49<br>47-53 0.75 0.035 0.49<br>53-58 0.79 0.038 0.49<br>58-60 0.74 0.061 0.48<br>60-63 0.81 0.039 0.55<br>63-69 0.81 0.054 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0-6<br>6-10<br>10-18<br>18-25<br>25-32<br>32-39<br>35-44<br>44-7-53<br>53-58<br>58-60<br>60-63<br>60-67<br>(lm)<br>0-6<br>10-18<br>18-25                                                       | 13.4<br>14.1<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14                                                                                                    | 5.6<br>6.3<br>7.0<br>7.3<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>8.2<br>0.042<br>0.042<br>0.042                                                   | 0.1<br>0.1<br>0.1<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 0.7<br>0.6<br>0.5<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6 | Sum 19.8 19.8 21.1 22.1 22.6 23.3 23.7 23.2 22.9 23.4 22.9 22.3 22.3                              | 11.0<br>10.1<br>7.6<br>6.5<br>5.6<br>5.6<br>6.2<br>3.5<br>4.0<br>3.2<br>1.9               | 30.8<br>31.2<br>29.7<br>29.1<br>29.1<br>29.3<br>28.8<br>29.1<br>26.9<br>26.4<br>26.3<br>25.7<br>25.2<br>Fe-Mn<br>12 kg/ | 22.4<br>22.8<br>22.4<br>22.5<br>23.1<br>23.3<br>22.0<br>21.5<br>21.3<br>21.0<br>20.7<br>20.7<br>20.7<br>nodule<br>m² to | 60 inc      | d ohms      | 0.71    | me/l.      | Pet.     | Sat.   | 2.4<br>2.2<br>2.1<br>2.0<br>2.0<br>1.9<br>1.9<br>1.8<br>1.8 |              |
| 47-53 0.75 0.035 0.49 53-58 0.79 0.038 0.49 60-63 0.81 0.08 0.08 0.08 60-63 0.81 0.039 0.55 63-69 0.81 0.055 0.05 0.05 0.05 0.05 0.05 0.05 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0-6 6-10 10-18 18-25 25-32 39-44 44-47 47-53 58-60 60-63 69-77  Depth (In )  0-6 6-10 10-18 18-25 25-32                                                                                        | 13.4<br>14.1<br>14.5<br>14.6<br>14.9<br>15.0<br>14.8<br>14.5<br>14.6<br>14.6<br>14.6<br>13.9<br>13.9<br>13.7<br>14.3<br>14.7<br>14.6<br>CEC                           | 5.6<br>6.3<br>7.0<br>7.3<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>8.2<br>0.042<br>0.042<br>0.045<br>0.044                                   | 0.1<br>0.1<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2        | 0.7<br>0.6<br>0.5<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6 | Sum 19.8 19.8 21.1 22.1 22.6 23.3 23.7 23.2 22.9 23.4 22.9 22.3 22.3                              | 11.0<br>10.1<br>7.6<br>6.5<br>5.6<br>5.6<br>6.2<br>3.5<br>4.0<br>3.2<br>1.9               | 30.8<br>31.2<br>29.7<br>29.1<br>29.1<br>29.3<br>28.8<br>29.1<br>26.9<br>26.4<br>26.3<br>25.7<br>25.2<br>Fe-Mn<br>12 kg/ | 22.4<br>22.8<br>22.4<br>22.5<br>23.1<br>23.3<br>22.0<br>21.5<br>21.3<br>21.0<br>20.7<br>20.7<br>20.7<br>nodule<br>m² to | 60 inc      | d ohms      | 0.71    | me/l.      | Pet.     | Sat.   | 2.4<br>2.2<br>2.1<br>2.0<br>2.0<br>1.9<br>1.9<br>1.8<br>1.8 |              |
| 47-53 0.75 0.035 0.49 58-60 0.79 0.038 0.49 58-60 0.74 0.061 0.48 60-63 0.81 0.039 0.55 63-69 0.81 0.054 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0-6<br>6-10<br>10-18<br>18-25<br>25-32<br>32-39<br>39-44<br>44-7-53<br>53-58<br>58-60-63<br>63-69<br>69-77                                                                                     | 13.4<br>14.1<br>14.5<br>14.6<br>14.6<br>14.9<br>15.0<br>14.8<br>14.6<br>14.6<br>14.6<br>13.9<br>13.7<br>14.3<br>Ratios 1                                              | 5.6<br>6.3<br>7.0<br>7.3<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>8.2<br>0.042<br>0.045<br>0.047                                                   | 0.1<br>0.1<br>0.1<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2               | 0.7<br>0.6<br>0.5<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6 | Sum 19.8 19.8 21.1 22.1 22.6 23.3 23.7 23.2 22.9 23.4 22.9 22.3 22.3                              | 11.0<br>10.1<br>7.6<br>6.5<br>5.6<br>5.6<br>6.2<br>3.5<br>4.0<br>3.2<br>1.9               | 30.8<br>31.2<br>29.7<br>29.1<br>29.1<br>29.3<br>28.8<br>29.1<br>26.9<br>26.4<br>26.3<br>25.7<br>25.2<br>Fe-Mn<br>12 kg/ | 22.4<br>22.8<br>22.4<br>22.5<br>23.1<br>23.3<br>22.0<br>21.5<br>21.3<br>21.0<br>20.7<br>20.7<br>20.7<br>nodule<br>m² to | 60 inc      | d ohms      | 0.71    | me/l.      | Pet.     | Sat.   | 2.4<br>2.2<br>2.1<br>2.0<br>2.0<br>1.9<br>1.9<br>1.8<br>1.8 |              |
| 53-58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0-6<br>6-10<br>10-18<br>18-25<br>25-32<br>32-39<br>39-44<br>47-53<br>53-58<br>58-60-63<br>63-69<br>69-77                                                                                       | 13.4<br>14.1<br>14.5<br>14.6<br>14.9<br>15.0<br>14.5<br>14.6<br>14.2<br>13.9<br>13.7<br>14.3<br>Ratios t<br>NH <sub>4</sub> OAc<br>CEC                                | 5.6<br>6.3<br>7.0<br>7.3<br>7.6<br>7.9<br>7.6<br>0.0<br>7.9<br>7.6<br>7.5<br>8.2<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0          | 0.1<br>0.1<br>0.1<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2               | 0.7<br>0.6<br>0.5<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6 | Sum 19.8 19.8 21.1 22.1 22.6 23.3 23.7 23.2 22.9 23.4 22.9 22.3 22.3                              | 11.0<br>10.1<br>7.6<br>6.5<br>5.6<br>5.6<br>6.2<br>3.5<br>4.0<br>3.2<br>1.9               | 30.8<br>31.2<br>29.7<br>29.1<br>29.1<br>29.3<br>28.8<br>29.1<br>26.9<br>26.4<br>26.3<br>25.7<br>25.2<br>Fe-Mn<br>12 kg/ | 22.4<br>22.8<br>22.4<br>22.5<br>23.1<br>23.3<br>22.0<br>21.5<br>21.3<br>21.0<br>20.7<br>20.7<br>20.7<br>nodule<br>m² to | 60 inc      | d ohms      | 0.71    | me/l.      | Pet.     | Sat.   | 2.4<br>2.2<br>2.1<br>2.0<br>2.0<br>1.9<br>1.9<br>1.8<br>1.8 |              |
| 58-60   0.74   0.061   0.18     60-63   0.81   0.039   0.55     63-69   0.81   0.054   0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0-6<br>6-10<br>10-18<br>18-25<br>25-32<br>32-39<br>39-14<br>44-7-53<br>53-58<br>58-60<br>60-63<br>69-77<br>0-6<br>6-10<br>10-18<br>18-25<br>25-32<br>32-39<br>39-14<br>44-47                   | 13.4<br>14.1<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14                                                                                                    | 5.6<br>6.3<br>7.0<br>7.6<br>7.9<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>8.2<br>0.042<br>0.042<br>0.042<br>0.044<br>0.045<br>0.045                 | 0.1<br>0.1<br>0.1<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2               | 0.7<br>0.6<br>0.5<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6 | Sum 19.8 19.8 21.1 22.1 22.6 23.3 23.7 23.2 22.9 23.4 22.9 22.3 22.3                              | 11.0<br>10.1<br>7.6<br>6.5<br>5.6<br>5.6<br>6.2<br>3.5<br>4.0<br>3.2<br>1.9               | 30.8<br>31.2<br>29.7<br>29.1<br>29.1<br>29.3<br>28.8<br>29.1<br>26.9<br>26.4<br>26.3<br>25.7<br>25.2<br>Fe-Mn<br>12 kg/ | 22.4<br>22.8<br>22.4<br>22.5<br>23.1<br>23.3<br>22.0<br>21.5<br>21.3<br>21.0<br>20.7<br>20.7<br>20.7<br>nodule          | 60 inc      | d ohms      | 0.71    | me/l.      | Pet.     | Sat.   | 2.4<br>2.2<br>2.1<br>2.0<br>2.0<br>1.9<br>1.9<br>1.8<br>1.8 |              |
| <u>60-63                                   </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-6<br>6-10<br>10-18<br>18-25<br>25-32<br>32-39<br>39-44<br>44-47-53<br>53-58<br>58-60<br>60-63<br>63-69<br>69-77<br>Depth (In)                                                                | 13.4<br>14.1<br>14.5<br>14.6<br>14.9<br>15.0<br>14.8<br>14.5<br>14.6<br>14.6<br>13.9<br>13.7<br>14.3<br>Patios (10.63<br>0.72<br>0.75<br>0.78<br>0.79<br>0.79<br>0.79 | 5.6<br>6.3<br>7.0<br>7.3<br>7.6<br>7.9<br>7.6<br>0.0<br>7.6<br>7.6<br>7.6<br>7.5<br>8.0<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5 | 0.1<br>0.1<br>0.1<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2               | 0.7<br>0.6<br>0.5<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6 | Sum 19.8 19.8 21.1 22.1 22.6 23.3 23.7 23.2 22.9 23.4 22.9 22.3 22.3                              | 11.0<br>10.1<br>7.6<br>6.5<br>5.6<br>5.6<br>6.2<br>3.5<br>4.0<br>3.2<br>1.9               | 30.8<br>31.2<br>29.7<br>29.1<br>29.1<br>29.3<br>28.8<br>29.1<br>26.9<br>26.4<br>26.3<br>25.7<br>25.2<br>Fe-Mn<br>12 kg/ | 22.4<br>22.8<br>22.4<br>22.5<br>23.1<br>23.3<br>22.0<br>21.5<br>21.3<br>21.0<br>20.7<br>20.7<br>20.7<br>nodule          | 60 inc      | d ohms      | 0.71    | me/l.      | Pet.     | Sat.   | 2.4<br>2.2<br>2.1<br>2.0<br>2.0<br>1.9<br>1.9<br>1.8<br>1.8 |              |
| 63-69 p.81 p.054 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0-6<br>6-10<br>10-18<br>18-25-32<br>32-39<br>39-44<br>44-7-53<br>53-58<br>58-60<br>60-63<br>63-69<br>69-77<br>0-6<br>10-18<br>18-25<br>25-32<br>32-39<br>44-47<br>47-53<br>53-58<br>53-58      | 13.4<br>14.1<br>14.5<br>14.6<br>14.9<br>15.0<br>14.5<br>14.6<br>14.5<br>13.9<br>13.7<br>14.3<br>Ratios t<br>NII <sub>4</sub> OAc<br>CEC                               | 5.6<br>6.3<br>7.0<br>7.3<br>7.6<br>7.9<br>7.6<br>3.0<br>7.9<br>7.6<br>7.6<br>7.6<br>7.5<br>8.2<br>0.045<br>0.047<br>0.047<br>0.045<br>0.045<br>0.038          | 0.1<br>0.1<br>0.1<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2               | 0.7<br>0.6<br>0.5<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6 | Sum 19.8 19.8 21.1 22.1 22.6 23.3 23.7 23.2 22.9 23.4 22.9 22.3 22.3                              | 11.0<br>10.1<br>7.6<br>6.5<br>5.6<br>5.6<br>6.2<br>3.5<br>4.0<br>3.2<br>1.9               | 30.8<br>31.2<br>29.7<br>29.1<br>29.1<br>29.3<br>28.8<br>29.1<br>26.9<br>26.4<br>26.3<br>25.7<br>25.2<br>Fe-Mn<br>12 kg/ | 22.4<br>22.8<br>22.4<br>22.5<br>23.1<br>23.3<br>22.0<br>21.5<br>21.3<br>21.0<br>20.7<br>20.7<br>20.7<br>nodule          | 60 inc      | d ohms      | 0.71    | me/l.      | Pet.     | Sat.   | 2.4<br>2.2<br>2.1<br>2.0<br>2.0<br>1.9<br>1.9<br>1.8<br>1.8 |              |
| 95-11 p. 90 p. 939 p. 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0-6<br>6-10<br>10-18<br>18-25<br>25-32<br>39-14<br>44-7-53<br>53-58<br>58-60<br>60-63<br>69-77<br>0-6<br>6-10<br>10-18<br>18-25<br>25-32<br>32-39<br>44-47<br>47-53<br>53-58<br>53-58<br>66-63 | 13.4<br>14.1<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14                                                                                                    | 5.6<br>6.3<br>7.0<br>7.5<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6                                                                | 0.1<br>0.1<br>0.1<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2               | 0.7<br>0.6<br>0.5<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6 | Sum 19.8 19.8 21.1 22.1 22.6 23.3 23.7 23.2 22.9 23.4 22.9 22.3 22.3                              | 11.0<br>10.1<br>7.6<br>6.5<br>5.6<br>5.6<br>6.2<br>3.5<br>4.0<br>3.2<br>1.9               | 30.8<br>31.2<br>29.7<br>29.1<br>29.1<br>29.3<br>28.8<br>29.1<br>26.9<br>26.4<br>26.3<br>25.7<br>25.2<br>Fe-Mn<br>12 kg/ | 22.4<br>22.8<br>22.4<br>22.5<br>23.1<br>23.3<br>22.0<br>21.5<br>21.3<br>21.0<br>20.7<br>20.7<br>20.7<br>nodule          | 60 inc      | d ohms      | 0.71    | me/l.      | Pet.     | Sat.   | 2.4<br>2.2<br>2.1<br>2.0<br>2.0<br>1.9<br>1.9<br>1.8<br>1.8 |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-6<br>6-10<br>10-18<br>18-25<br>32-39<br>39-44<br>44-47-53<br>53-58<br>58-60-63<br>63-69<br>69-77<br>Depth (ln)                                                                               | 13.4<br>14.1<br>14.5<br>14.6<br>14.6<br>14.6<br>14.6<br>14.6<br>14.6<br>14.6<br>13.9<br>13.7<br>14.3<br>Ratios 1<br>NII <sub>4</sub> OAC<br>CEC                       | 5.6<br>6.3<br>7.0<br>7.6<br>7.9<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6                                                         | 0.1<br>0.1<br>0.1<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2               | 0.7<br>0.6<br>0.5<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6 | Sum 19.8 19.8 21.1 22.1 22.6 23.3 23.7 23.2 22.9 23.4 22.9 22.3 22.3                              | 11.0<br>10.1<br>7.6<br>6.5<br>5.6<br>5.6<br>6.2<br>3.5<br>4.0<br>3.2<br>1.9               | 30.8<br>31.2<br>29.7<br>29.1<br>29.1<br>29.3<br>28.8<br>29.1<br>26.9<br>26.4<br>26.3<br>25.7<br>25.2<br>Fe-Mn<br>12 kg/ | 22.4<br>22.8<br>22.4<br>22.5<br>23.1<br>23.3<br>22.0<br>21.5<br>21.3<br>21.0<br>20.7<br>20.7<br>20.7<br>nodule          | 60 inc      | d ohms      | 0.71    | me/l.      | Pet.     | Sat.   | 2.4<br>2.2<br>2.1<br>2.0<br>2.0<br>1.9<br>1.9<br>1.8<br>1.8 |              |

Pedon classification: Typic Hapludoll; fine-silty mixed, mesic.

Series classification: (Same as pedon),

Soil: Marshall silty clay loam.

Soil no.: S63-Iowa-15-3 (LSL Nos. 18342 - 18355).

Location: Cass County, Iowa 798 feet south of road center and 379 feet east of the NW corner of the NW SE% sec. 34, T. 77 N., R. 37 W., (approximately 3 miles northeast of Atlantic, Iowa).

Vegetation and land use: Plowed, cropland.

Parent material: Wisconsin losss.

Elevation: 9.30 feet lower in elevation than S63-Iowa-15-1 in Cass County transect.

Physiography: Unstable sideslope of a short interfluve which projects into a cove position formed by a forked hillside drainageway.

Slope: About 6 to 7 percent toward the west-northwest.

Drainage: Well drained.
Moisture: Moist 0 to 32 inches and 53 to 77 inches but somewhat dry at 32 to 53 inches.

Permeability: Moderate.
Ground water: Below 77 inches.
Root distribution: Not determined.
Described by: R. I. Dideriksen.

(Colors are for moist soil unless otherwise stated)

Ap 18342 0 to 15 cm (0 to 6 inches). Very dark brown (10YR 2/2) to very dark grayish brown (10YR 3/2) light to medium silty clay loam; kneaded color the same; grayish brown (10YR 5/2) dry; weak medium subangular blocky structure parting to weak fine granular; friable; few medium root channels; strongly acid (pH 5.4) abrupt smooth boundary

A3 18343 15 to 25 cm (6 to 10 inches). Very dark grayish brown (10YR 3/2) and grayish brown (10YR 5/2), very dark grayish brown (10YR 3/2) to dark brown (10YR 3/3) when kneaded; medium silty clay loam; some pale brown (10YR 6/3) dry; weak fine subangular blocky structure parting to weak fine granular; friable; common fine and madium root channels; some mixing of brown (10YR 4/3) peds; few very dark brown (10YR 2/2) fills in vertical pores; medium acid (pu 5.6); clear smooth boundary.

B21 18344 25 to 45 cm (10 to 18 inches). Brown (10YR 4/3) light to medium silty clay loam; pale brown (10YR 6/3) dry; yellowish brown (10YR 5/4) when kneaded; weak to moderate fine subangular blocky structure; friable; common fine and medium inped tubular pores; few peds have thin discontinuous stains of very dark grayish brown (10YR 3/2) color; few 1/8-inch fills in pores of very dark brown to very dark grayish brown material from above; slightly acid (pH 6.4); gradual smooth boundary.

B22 18345 45 to 63 cm (18 to 25 inches). Yellowish brown (10YR 5/4) light silty clay loam; faces of peds brown (10YR 4/3); weak medium prismatic structure parting to weak fine subangular blocky; very few fine grayish brown (2.5Y 5/2) mottles; friable; pores as above; few very thin discontinuous clay films on some vertical faces. Figure 114bb towards to method the portions of the bortons of the bortons of the bortons.

and fall to the type amonth houndary

B31 18346 63 to 80 cm (25 to 32 inches). Color, texture, and structure same as above; common fine grayish brown (2.5Y 5/2), dark yellowish brown (10YR 4/4), and yellowish brown (10YR 5/6) mottles; friable; pores as above; very few thin discontinuous clay films on some vertical faces; slightly acid (pH 6.4); gradual smooth boundary.

B32 18347 80 to 100 cm (32 to 39 inches). Mottles yellowish brown (10YR 5/4) brown (10YR 4/3), and olive gray (5Y 5/2) heavy silt loam to light silty clay loam; structure as above but medium in size; friable; tubular on fire\_eoft dark brown

peds; slightly acid (pH 6.4); gradual smooth boundary.

B33 18348 100 to 113 cm ( 39 to 44 inches). Color, texture, and structure like B32 horizon; many fine strong brown (7.5YR 5/6) to yellowish brown (10YR 5/6) mottles; friable; pores as above; oxides as above; few 12 inch Color, texture, and structure like B32 horizon; many fine strong spherical voids; few indistinct silt coats on vertical ped faces; neutral (pH 6.6); abrupt smooth boundary.

B34 18349 113 to 120 cm (44 to 47 inches). Brown (7.5YR 4/4) and strong brown (7.5YR 5/8) silt loam; weak coarse prismatic structure; common fine olive gray (5Y 5/2) mottles; friable; pores as above; zone of iron

SOIL Marshall silty clay loam

Soll Nos. 863 Iowa-83-1 LOCATION Shellby County, Iowa

SOIL SURVEY LABORATORY Idncoln, Nebra General Methods: LA, 1Elb, 2Al, 2B

Lincoln, Nebraska

\_\_ LAB Nos. <u>1835</u>6-18364

May 1967

|                         | 1                   | <u> </u>                                         | Tate!             | -                 | T                    |                 |                   |                      | s and parti |              |                                                  |              | 3A.            | <u> </u>   |         | I 4          |             | - 4           |
|-------------------------|---------------------|--------------------------------------------------|-------------------|-------------------|----------------------|-----------------|-------------------|----------------------|-------------|--------------|--------------------------------------------------|--------------|----------------|------------|---------|--------------|-------------|---------------|
|                         |                     |                                                  | Total             |                   | -                    |                 |                   | Sand                 |             | Sil          | lt.                                              |              |                |            |         |              | rse fragmei | nts<br>I      |
| Depth                   | Horizon             | Sand                                             | Silt              | Clay              | Very                 | Coarse          | Medium            | Fine                 | Very fine   |              | Int. III                                         | int. 🎞       |                |            |         | 2A2          | 2 - 19      | 19-           |
| (ln.)                   |                     | (2- <u>0</u> 05)                                 | (0 05-            | ( <b>≠</b> 0 002) | coarse<br>(2-1)      | (1-0.5)         | (0.5-0 25)        | (0.25-0 1)           | (0 1–0 05)  | 0.05~0 02    | (0.02-                                           | (0.2-0 02)   | (2-0 1)        |            |         |              |             | l .           |
|                         |                     | _ =                                              | 0 002)            | ı                 | 1                    |                 | l<br>∴of << 2 ≀   |                      |             |              | 0.002)                                           | '            |                |            |         | Pct.         |             | t of _<br>6mm |
| 0-7                     | Alp                 | 2,6                                              | 68.4              | 29.0              | -                    | 0.1             | 0.1               | 0.2                  | 2.2         | 37.6         | 30.8                                             | 39.9         | 0.4            | <u> </u>   |         | -            |             |               |
| 7-16                    | AIĒ                 | 2.2                                              | 65.4              | 32.4              | -                    | 0.1             | 0.1               | 0.2                  | 1.8         | 34.7         | 30.7                                             | 36.6         | 0.4            |            |         | -            |             |               |
| 16-23                   | A3                  | 2.5                                              | 64.6              | 32.9              | -                    | 0.1             | 0.1               | 0.2                  | 2.1         | 33.3         | 31.3                                             | 35.4         | 0.4            |            |         | -            |             |               |
| 23-33                   | B21                 | 3.0                                              | 64.2              | 32.8              | -                    | 0.1             | 0.1               | 0.3                  | 2.5         | 35.0         | 29.2                                             | 37.7         | 0.5            | T          |         | <del>-</del> | T           |               |
| 33~38                   | B22                 | 3.3                                              | 67.0              | 29.7              | -                    | tr              | 0.1               | 0.3                  | 2.9         | 40.3         | 26.7                                             | 43.4         | 0.4            |            |         | -            |             |               |
| 38-45                   | B23                 | 4.0                                              | 69.0              | 27.0              | -                    | tr              | 0.1               | 0.3                  | 3.6         | 40.1         | 28.9                                             | 43.9         | 0.4            |            |         |              | ļ           | ١.            |
| 45-56<br>56-63          | B31                 | 4.3                                              | 69.5<br>68.9      | 26.2<br>26.8      | -                    | 0.1             | 0.1               | 0.4                  | 3.7         | 40.8         | 28.7                                             | 44.8<br>44.8 | 0.6            |            |         | _            |             |               |
| 63-72                   | 1332<br>C1          | 4.4                                              | 69.6              | 26.0              | -                    | tr              | 0.1               | 0.3                  | 3.7<br>4.0  | 40.9<br>41.8 | 28.0<br>27.8                                     | 46.0         | 0.6            |            |         | _            |             |               |
| <u>عا-ره</u>            |                     | 1::-                                             | 0,0               | 20.0              |                      |                 |                   | 0.5                  | 7.0         | 41.0         | 21 10                                            | 40.0         | VF             |            | _       | ·            |             |               |
|                         | <br>  6Ala          | <br>  6 <b>B</b> la                              |                   | <u> </u>          | 6E2a                 | 602a            | <u> </u>          | Bulk denset          | <u> </u>    | 4D1          | 1 1                                              | Yater conte  |                |            |         | 1            | pH          | <u> </u>      |
|                         |                     |                                                  |                   |                   |                      | Ext.            | 4Ala              | 4Ald                 | 4Alb        | TIAL         | 14:B44                                           | 4Blc         | 4. <b>18</b> 2 | Acı        | ł       | <u> </u>     | J II        | 80            |
| Depth                   | Organic<br>carbon   | Nitrogen                                         | C/N               |                   | Carbonate            |                 | Field-            | 1/3-                 | Air-        | COLE         | Field-                                           | 1/3-         | 15-            | 1/3-to     |         |              |             |               |
| (In )                   | Carbon              |                                                  |                   |                   | as CaCO <sub>3</sub> |                 | State             | Bar                  | Dry         |              | State                                            | Bar          | Bar            | 15-Bar     |         |              |             | (1            |
|                         | <u>b</u>            |                                                  |                   |                   |                      | Fe              |                   |                      | •           |              |                                                  |              |                | -          |         |              |             |               |
|                         | Pct                 | Pct                                              |                   |                   | Pct                  | Pet.            | g/cc              | g/cc                 | g/cc        |              | Pct                                              | Pct,         | Pct            | in/in      |         |              |             |               |
| 0-7                     | 2.61                | 0.204                                            | 13                |                   |                      | 1.0             | 1.28              | 1.27                 | 1.35        | 0.020        |                                                  | 24.4         | 13.2           | 0.14       |         |              |             | 6.            |
| 7-16                    | 2.16                | 0.179                                            | 12                |                   |                      | 1.1             | 1.30              | 1.28                 | 1.39        | 0.028        |                                                  | 27.3         | 13.1           | 0.18       |         |              |             | 5.            |
| 16-23<br>23-33          | 1.45<br>0.78        | 0.133                                            |                   |                   |                      | 1.2             | 1.22              | 1.19                 | 1.32        | 0.036        |                                                  | 26.6         | 14.3           | 0.15       |         |              |             | 5.            |
| 33-38                   | 0.38                | 10.010                                           | 10                |                   |                      | 1.3             | 1+44              | 1.24<br>1.3 c        | 1.37        | 0.036        | 20,0                                             | 26.7         | 14.0<br>14.2   | 0.10       |         |              |             | 5.<br>5.      |
| 38-45                   | 0.25                |                                                  |                   |                   |                      | 1.3             | 1.30              | 1.29                 | 1.40        | 0.028        | 26.7                                             | 25.2         | 14.3           | 0.14       |         |              |             | j.            |
| 45-56                   | 0.15                | <del>                                     </del> |                   |                   |                      | 1.3             | 1.32              | 1.28                 | 1.39        | 0.028        |                                                  | 25.4         | 13.9           | 0.15       |         |              |             | 5.            |
| 56-63                   | 0.08                |                                                  |                   |                   |                      | 1.2             |                   | 1.3 c                |             |              |                                                  |              | 13.5           |            |         |              |             | 6.            |
| 63-72                   | 0.09                |                                                  |                   |                   | -(s)                 | 1.2             | 1.33              |                      | 1.39        | 0.024        | 23.5                                             | 27.2         | 13.4           | 0.18       |         |              |             | 6.            |
|                         |                     |                                                  |                   |                   |                      |                 |                   |                      |             |              |                                                  |              |                |            |         |              |             |               |
|                         | (1000               | Extractab                                        |                   | 5Bla              |                      |                 | Cat. Ex           |                      | <u> </u>    |              |                                                  |              |                |            | 8D3     |              | Base sat    | _             |
| Depth                   | 6 <b>N</b> 2a       | 602a                                             | 6P2a              | 692a              |                      | Ext.<br>Acidity | 5A3a<br>Sum       | 5Ala                 |             |              |                                                  |              |                |            | n_ /sr_ |              | 5C3         | 50            |
| (In )                   | Ca                  | Mg                                               | Na                | к                 | Sum                  | ALLE OU         | Sun               | NH <sub>14</sub> OAc |             |              |                                                  |              |                |            | Ca/Mg   |              | Sum         | инт           |
|                         |                     | •                                                |                   |                   |                      |                 | Cations           |                      |             |              |                                                  |              |                |            |         |              | Cations     | Pci           |
| 0-7                     | 17.4                | 3.9                                              | tr                | 1.0               | meq/100 g<br>22.3    | 8.3             | 30.6              | 22.6                 |             |              | <del>                                     </del> |              |                |            | 4.5     | $\vdash$     | 73          | 9             |
| 7-16                    | 15.3                | 5.1                                              | 0.1               | 0.6               | 21.1                 | 10.6            | 31.7              | 22.9                 | l           |              | 1                                                | 1            |                |            | 3.0     |              | 67          | 9             |
| 16-23                   | 15.5                | 5.1<br>6.0                                       | 0.1               | 0.6               | 22.2                 | 9.7             | 31.9              | 22.7                 | L           |              | L                                                |              |                |            | 2.6     |              | 70          | وَ            |
| 23-33                   | 14.9                | 6.9                                              | ί.ι <sup>*-</sup> | 0.6               | 22.5                 | 7.5             | 30.0              | 22.1                 |             |              |                                                  |              |                |            | 2.2     |              | 75          | 10            |
| 33-38                   | 14.6                | 6.9                                              | 0.1               | 0.5               | 22.1                 | 6.4             | 28.5              | 21.1                 |             |              |                                                  |              |                |            | 2.1     |              | 78          | 10            |
| 38-45                   | 14.7                | 6.9                                              | 0.2               | 0.5               | 22,3                 | 5.1             | 27.4              | 20.9                 |             |              | -                                                | <b>├</b> ──  | <b></b> .      | ļ <u>-</u> | 2.1     |              | 81          | 10            |
| 45-56                   | 14.6                | 7.0                                              | 0.2               | 0.6               | 22.4                 | 5.2             | 27.6              | 20.3                 |             |              |                                                  |              |                |            | 2.1     |              | 81          | 11            |
| 56-63<br>63 <b>-</b> 72 | 14.7<br>14.2        | 7.3                                              | 0.2               | 0.6               | 22.8                 | 4.7<br>4.2      | 27.5<br>26.7      | 20.8                 |             |              |                                                  |              |                |            | 2.0     |              | 84          | 11            |
| <u>~_&gt;=16i</u>       | 144.6               | '''                                              | V.E               | 0.0               |                      | 7,2             | 20.1              |                      |             |              |                                                  |              |                |            | 47      |              |             |               |
|                         | Ratios              | to Cla                                           | y 8m.             |                   |                      |                 |                   | <u> </u>             |             |              |                                                  | <u> </u>     |                |            |         | l            | <u> </u>    | <u> </u>      |
| Depth                   |                     |                                                  | Ī                 | 1                 |                      | a.              | Fe-Mn∶            | ngdule               | s: >        | 50 per       | cent (                                           | 1-0.1        | mm:).          |            |         |              |             |               |
| (ln.)                   | NH <sub>1</sub> OAc | Ext.<br>Iron                                     | 15-Ba<br>Water    |                   |                      |                 | 20 kg/:<br>Estima |                      | 60 incl     | hes (M       | ethod                                            | 6A).         |                |            |         |              |             |               |

CEC 0.034 0.46 0.034 0.40 0.036 0.43 0.040 0.43 0.048 0.53 0.048 0.53 0.045 0.53 0.045 0.52 0-7 7-16 16-23 0.69 23-33 0.67 33-38 0.77 45-56 0.77 56-63 0.78 63-72 0.77

Pedon classification: Typic Hapludoll; fine-silty, mixed, mesic.

Series classification: (Same as pedon).

Soil: Marshall silty clay loam.

Soil no.: \$63-Town-83-1 (LSL Nos. 18356 - 18364).

Location: Shelby County, Iowa, 362 feet south and 968 feet west of the center of road corner in the NEW NWW. sec. 28 T. 78 N. R. 38 W., (approximately 3 miles north of Walnut, Iowa). Vegetation and land use: Alfalfa; cropland. Parent material: Wisconsin losss.

Elevation: 0.00 feet in respect to other sites in Shelby County transect.

Physiography: Moderately broad (about \( \frac{1}{2} \)-mile wide\) upland divide. This divide may be slightly higher in elevation to the east where it is about \( \frac{1}{2} \)-mile wide.

Slope: Less than 1 percent toward the west.

Drainage: Well drained.
Moisture: Moist at 0 to 38 inches and below 56 inches; somewhat dry at 38 to 56 inches.

Permeability: Moderate. Ground water: Below 72 inches.

Root distribution: Roots are abundant at 0 to 16 inches, common at 16 to 33 inches, and few at 33 to 56 inches. Described by: R. I. Dideriksen, C. S. Fisher.

(Colors are for moist soil unless otherwise stated)

Ap 18356 0 to 18 cm (0 to 7 inches). Black (10YR 2/1) light silty clay loam, dark gray (10YR 4/1) when dry; black (10YR 2/1) to very dark brown (10YR 2/2) when kneaded; weak medium subangular blocky structure parting to weak fine granular; friable; common fine and medium root channels; weak plow sole at 5 to 7 inches; few very dark brown wormcasts; slightly acid (pH 6.4); abrupt smooth boundary.

A12 18357 18 to 40 cm (7 to 16 inches). Black (10YR 2/1) light silty clay loam, dark gray (10YR 4/1) when dry; very dark brown (10YR 2/2) when kneaded; weak fine subangular blocky and fine granular structure; friable; root channels as above; few fine peds of brown (10YR 4/3) in lower part; common very dark brown wormcasts; slightly acid (pH 6.2); gradual smooth boundary

A3 18358 40 to 58 cm (16 to 23 inches). Very dark grayish brown (10YR 3/2) light to medium silty clay loam, kneaded color same; dark gray (10YR 4/1) and some grayish brown (10YR 5/2) when dry; weak fine subangular blocky structure; friable; few fine and medium inped tubular pores; brown (10YR 4/3) peds are common; some 1/8-inch channel fills of very dark brown (10YR 2/2) material; slightly said (pH 6.2); clear smooth boundary.

821 18359 58 to 83 cm (23 to 33 inches). Brown (10YR 4/3) medium silty clay loam; few faces of peds are very dark grayish brown (10YR 3/2); pale brown (10YR 6/3) when dry; weak fine subangular blocky structure; friable; few fine inped tubular pores; few very thin discontinuous clay films; hue of horizon toward 2.5Y; few vormeasts as above; some 1-inch spherical voids; slightly acid (pH 6.4) gradual smooth boundary.

B22 18360 83 to 95 cm (33 to 38 inches). Brown (10YR 4/3) light to medium silty clay loam; yellowish brown (10YR 5/4) when kneaded; weak medium prismatic structure parting to weak medium subengular blocky structure; very few very fine grayish brown (2.5Y 5/2) and very few fine brown (7.5YR 4/4) mottles; many fine inped tubular pores; thin discontinuous clay films on vertical faces; very few very fine soft dark brown to black accumulations of oxides; neutral (pH 6.6); clear smooth boundary.

B23 18361 95 to 115 cm (38 to 45 inches). Mottles brown (10YR 4/3) and grayish brown (2.5Y 5/2) to olive gray (5Y 5/2) light silty clay loam; yellowish brown (10YR 5/4) when kneaded; weak medium prismatic structure parting to weak medium subangular blocky structure; common fine brown (7.5YR 4/4) and strong brown (7.5YR 5/6) mottles; friable to firm; pores as above; very few very thin discontinuous clay films on some vertical faces; very few 4-inch spherical voids; few fine soft dark brown to black accumulations of oxides; neutral (pH 6.6) gradual amooth boundary.

B31 18362 115 to 143 cm (45 to 56 inches). Mottle8 yellowish brown (10YR 5/4) and olive gray (5Y 5/2) heavy silt loam; structure as above; many medium yellowish brown (10YR 5/6 to 5/8) mottles; friable to firm; pores as above; common fine soft dark brown to black accumulations of oxides; neutral (pH 6.4); diffuse smooth boundary.

832 18363 143 to 160 cm (56 to 63 inches). Color, texture, and mottles as above; massive with some vertical cleavage; very few indistinct grainy silt coats on some cleavage faces; pores and concretions as above; slightly acid (ph 6.4); diffuse smooth boundary.

C1 18364 160 to 183 cm (63 to 72 inches). Same as horizon above but vertical cleavage may be absent.

Remarks: Two-inch rodent burrow filled with dark materials at 40 inches. Mottles of 2.5Y to 5Y hue below 33 inches appear to be a relict feature. No distinct deoxidized zone observed in pit, but about 50 percent of the colors are olive gray below 45 inches. Marshall soils S63-Iows-83-1, 83-2, and 83-3 were sampled in transect. Consistence is at moist field condition.



SOIL Marshall silty clay loam \_\_\_\_ SOIL Nos. <u>863.Towa-83-2</u> Location . Shelby County, Iowa Lincoln, Nebraska 18365-18374 May 1967 SOIL SURVEY LABORATORY IAR Nos General Methods: 1A, 1Blb, 2A1, 2B Size class and particle diameter (mm) 3A1 Sand Coarse fragments Fine Verv Depth Horizon Sand Silt Clay Medium Very fine Int. III Ist, II 2 - 19 19-76 (2-0 05) (0.05coarse (2-1) (1-0 5) (0 5-0 25) (0 25-0 1) (0.1-0.05) 0.05-0.02 (0 02-( = 0.002) (In) (2-0.1)Pct < 76mm 66.6 0-7 Αlp 3.0 30.4 0.1 0.1 0.1 0.5 0.2 2.5 27.9 41.3 7-13 IA12 2.6 63.9 33.5 tr 0,1 0.1 0.2 2.2 35.7 28.2 38.0 38.6 0.4 <u> 13-18</u> A3 2.8 32.8 2,4 28.3 tr 0.1 0.1 0.2 0.4 18-27 B21 3.2 4.1 66.4 30.4 2.8 38.9 27.5 41.8 tr 0.1 0.1 0.2 0.4 \_ 27-34 B22 67.7 28.2 28.0 43.6 0.1 3.7 39.7 tr 0.3 0.4 \_ 34-44 B31 69.0 68.2 26.9 27.4 28.8 45.4 0.1 4.1 0.1 3.6 3.6 41.6 0.3 0.5 3.8 44-50 28.0 43.1 B32 tr tr0.2 39.4 40.5 0.2 3.7 4.7 50-58 69.4 tr (CI 26.9 tr 0.2 28.9 44.1 0.2 27.7 30.3 4.4 41.9 40.2 58-68 œ 69.6 46.4 25.7 tr 0.1 0.2 0.3 68-76 70.5 0.1 0.3 3.7 44.1 0.4 tr 6Ala 6Bla 6E2a 6C2a 4D1 Bulk density Water content рΗ 4B4 | 4Blc | 4B2 Ext. 4Ala 4Ald 4Alb 4C1 8сца Depth Organic Nitrogen C/N Carbonate Iron Meld-1/3-Air-COLE Field-1/3-15-1/3-to (ln) carbon as CaCO<sub>a</sub> (1.1)State Her Dry State 15-Bar 86 Bar Bar b Pct. Fe Pct. Pct g/cc Pet 2,20 0.195 11 1.32 1.31 1.41 0.024 24.0 24.4 0-7 1.3 13.0 0.15 5.6 0.032 28.2 27.4 5.7 5.8 5.8 7-13 1.87 12 1.26 14.1 | 0.17 0.156 1.3 1.25 | 1.37 0.032 27.5 14.5 <u>13-18</u> 0.106 1.24 1.24 1.36 1.34 10 26.4 1.11 1.3 0.15 18-27 0.58 10.062 9 1.3 1.24 1.23 26.1 14.0 0.15  $|1.2\overline{4}|1.\overline{3}6$ 27-34 0.33 1.4 1.25 0.032 28.0 25.5 13.4 5.9 34-44 0.21 1.3 1.3 c 5.9 1,44 0.17 1.34 44-50 1.3 1.31 0.032 27.7 27.0 13.7 0.17 6.0 1,38 50-58 1.4 1.34 1.46 0.028 25.0 26.7 13.6 | 0.18 0.11 6.0 58-68 0.10 1,2 1,3 c <u> 12.6</u> 6.2 68-76 0.10 -(s) 1.5 12.6 6.3 6Hla Cat.Exch, Cap. Ext. 5A3a | 5A1a Extractable bases 5Bla 8D3 б**№**2а 6P2a 602a 5¢3 5CL 600a Depth Accidity Sum NHLOAc Ca/Mg Sum NHL OA (In.) Ca Mg Na Sum Dettions Cations maq/100 g 13.9 14.7 11.0 63 87 4.3 0.1 0.8 30.1 22.0 19.1 3.2 9.8 7-13 5.5 6.3 0.1 0.6 20.9 30.7 22.9 2.7 68 91 13-18 14.8 0.1 0.6 21.8 8.2 30.0 21.6 2.3 73 101 18-27 14.8 6.6 0.1 0.6 22.1 6.6 28.7 20.0 2.2 77 111 27-34 14.7 6.6 0.1 0.5 21.9 5.1 27.0 20.7 2.2 8i 106 4.9 بليا ـ بلا 14,6 6.8 22.2 8<u>2</u> 83 27.1 20.4 0.2 0.6 2.1 109 4.6 27.5 44-50 120.7 15.2 6.9 0.2 0.6 22.9 2.2 111 14.6 4.2 26.5 84 50-58 6.9 0.2 0.6 22.3 20.8 2.1 107 13.8 58-68 0.2 21.3 3.8 25.1 19.7 85 0,6 2.1 108 68-76 13.7 7.0 0.2 0.6 3.8 25.3 18.3 85 2.0 117 Ratios to Clay 8D1 Fe-Mn nodules: > 50 percent (2-0.1 mm). Depth b. 14 kg/m<sup>2</sup> to 60 inches (Method 6A). NH, OAc Ext. 15-Bea Estimated. C-Iron Water CEC 0.72 0.043 0.43 0-7 7-13 0.68 0.039 0.42 13-18 18-27 0.66 0.040 0.44 0.043 0.46 0.66 0.050 0.48 27-34 0.73 34-44 0.76 0.049 0.48 44-50 0.74 0.046 0.49 50-58 0.77 0.052 0.51 58-68 lo<u>.77</u> 0.047 0.49 68-76

0.72

0.059 0.50

Pedon classification: Typic Hapludoll; fine-silty, mixed, mesic-

Series classification: (Same as pedon).

Soil: Marshall silty clay loam.

Soil no.: S63-Iowa-83-2 (LSL Nos. 18365 - 18374).

Location: Shelby County, Iowa, 434 feet south and 1,224 feet west of center of road corner in the NE% NW% sec. 28, T. 78 N., R. 38 W., (approximately 3 miles north of Walnut, Iowa).

Vegetation and land use: Alfalfa, cropland.

Parent material: Wisconsin loess.

Physiography: Somewhat stable position on the axis of a poorly defined short interfluve. This interfluve extends into a cove position formed by a forked hillside drainageway.

Slope: About 3 percent toward the west.

Drainage: Well drained.

Moisture: Moist 0 to 76 inches. Permeability: Moderately permeable. Ground water: Below 76 inches.

Elevation: 2.71 feet lower in elevation than S63-Iowa-83-1 in Shelby County transect.

Root distribution: Roots abundant from 0 to 18 inches, common from 18 to 34 inches, few from 34 to 58 inches.

Described by: R. I. Dideriksen and C. S. Fisher.

(Colors are for moist soil unless otherwise stated)

Ap 18365 0 to 18 cm (0 to 7 inches). Very dark brown (10YR 2/2) light silty clay loam, kneaded color the same; dark gray (10YR 4/1) to grayish brown (10YR 5/2) when dry; weak medium subangular blocky structure parting to weak fine granular; friable; common fine and medium root channels; weak plow sole at 6 to 8 inches; slightly acid (pH 6.4); clear smooth boundary.

Al2 18366 18 to 33 cm (7 to 13 inches). Very dark brown (10YR 2/2) light silty clay loam, very dark grayish brown (10YR 3/2) when kneaded; grayish brown (10YR 5/2) when dry; weak fine subangular blocky and fine granular structure; friable; root channels as above; common dark brown and brown peds in lower part; few dark wormcasts; slightly acid (pH 6.4); clear smooth boundary.

A3 18367 33 to 45 cm (13 to 18 inches). Brown (10YR 4/3) light to medium silty clay loam; faces of peds very dark grayish brown (10YR 3/2) with 30 percent brown (10YR 4/3); dark brown (10YR 3/3) to very dark grayish brown (10YR 3/2) when kneaded; grayish brown (10YR 5/2) and some pale brown (10YR 6/3) when dry; weak fine subangular blocky structure; friable; common fine and very fine inped tubular pores; very few thin discontinuous stains on some peds; few dark wormcasts and fills in old root channels; slightly acid (pH 6.4); clear smooth boundary.

B21 18368 45 to 68 cm (18 to 27 inches). Yellowish brown (10YR 5/4) medium silty clay loam; faces of peds are brown (10YR 4/3), pale brown (10YR 6/3) when dry; weak fine subangular blocky structure; friable; pores as above; thin discontinuous clay films on some peds; a very few dark fills in old root channels; slightly acid (pH 6.5); gradual smooth boundary.

B22 18369 68 to 85 cm (27 to 34 inches). Yellowish brown (10YR 5/4) light silty clay loam; faces of peds brown (10YR 4/3) weak medium prismatic structure parting to weak medium subangular blocky; common fine grayish brown (2.5Y 5/2) and a few fine dark yellowish brown (10YR 4/4) mottles; friable; pores as above; a few very thin discontinuous clay films on some vertical faces; few very fine soft dark brown to black accumulations of oxides, slightly acid (pH 6.5); gradual smooth boundary.

B31 18370 85 to 113 cm (34 to 44 inches). Yellowish brown (10YR 5/4) light silty clay loam to heavy silt loam; structure and consistence as above; many medium grayish brown (2.5Y 5/2) and common fine dark brown to brown (7.5YR to 10YR 4/4) mottles; many fine and very fine inped tubular pores; less clay films than above; common fine soft dark brown to black accumulations of oxides, yellowish brown (10YR 5/4) when kneaded; neutral (pH 6.6); gradual smooth boundary.

B32 18371 113 to 128 cm (44 to 50 inches). Mottled yellowish brown (10YR 5/4) and olive gray (5Y 5/2) heavy silt loam; weak medium prismatic structure parting to very weak medium subangular blocky; common fine brown (7.5YR 4/4) mottles; friable; pores as above; some darker fills in vertical channels; very few indistinct silt coats on some vertical ped faces; oxides as above; slightly acid (pH 6.5); diffuse smooth boundary.

Cl 18372 128 to 148 cm (50 to 58 inches). Mottled brown (10YR to 7.5YR 4/4) and olive gray (5Y 5/2) silt loam; massive with some vertical cleavage; friable; common fine and very fine tubular pores; silt coats as above; slight increase in accumulations of oxides; neutral (pH 6.6); diffuse smooth boundary.

C2 18373 148 to 173 cm (58 to 68 inches). Mottled yellowish brown (10YR 5/6) and olive gray (5Y 5/2) silt loam; massive with some vertical cleavage; friable; pores as above; some indistinct silt coats on cleavage faces; oxides same as C1 horizon; neutral (pH 6.8); diffuse smooth boundary.

C3 18374 173 to 193 cm (68 to 76 inches). Same as above horizon but no cleavage noted.

Remarks: Rodent burrows occur at 10 inches, at 24 inches, and one at 54 inches; grayish brown mottles at 27 inches appear to be relict. Not a distinct deoxidized zone at 44 inches and below, but 50 percent of material is olive gray. Marshall soils S63-Iowa-83-1, 83-2, and 83-3 were sampled in transect. Consistence is at moist field condition. See description for Marshall, S63-Iowa-83-1, for elevation transect.

SOIL Marshall silty clay loam Soli Nos 863 Iowa-83-3 LOCATION Shelby County, Iowa LAB. Nos 18375-18387 Idncoln, Nebraska May 1967 SOIL SURVEY LABORATORY General Methods: 1A, 1B1b, 2A1, 2B Size class and particle diameter (mm) 3Á1 Total Sand 0.14 Coarse fragments 242 Very coarse (2-1) Madium Honzon Send Silt Clay Fine Very fine Int TIT Int II Denth 2 - 19 | 19 - 76 (1-0.5) | (0.5-0.25) | (0.25-0.1) | (0.1-0.05) | 0.05-0.02 | (0.02-0.02) | (0.2-0.02) | (2-0.1) (2-0.05) (0.05-0.002) (<0.002) (In ) Pet of < 76mm 65.8 0.1 10.2 1 25.4 0.4 32.5 31.3 7-12 3.4 64.1 0.2 35.2 28.9 73 0.1 38.4 0.3 1.7 3.1 3.6 65.1 19-16 37.4 38.2 ופ tr 0.1 0.2 3.5 3.5 27.7 40.8 0.3 65.9 30.1 16-22 1927 4-0 tr 0.1 0.4 41.9 67.1 28.9 3.6 22-27 B22 4.0 0.1 39.2 tr 0.3 27.9 43.0 0.4 27-34 B23 4.4 68.4 27.2 4.0 41.2 0.1 0.3 27.2 45.4 tr 0.434-42 B31 4.2 70.0 25.8 0.1 47 0 29.0 44.9 0.1 0.3 3.7 0.5 42-49 h o B30 69.4 26.6 0.1 0.1 ۵.آ 3.4 36.4 33.0 40.0 0.6 49-57 69.6 0.3 m 3.6 26.8 t.r 0.1 3.2 38.7 30.9 42.1 0.4 57-68 (P) <del>3.</del>9 69.5 26.6 tr 0.1 42.0 27.5 45.7 0.4 68-74 79-81 81-87 40.9 8 4.3 3.7 69.1 67.7 45.1 44.0 26.6 28.6  $\mathbf{tr}$ tr0.3 4.0 28.2 0.3 **₹** 3.0 70.0 27.0 0.1 40.6 29.4 | 43.4 0.2 12.7 0.3 \_ Bulk density μm Water content бва 6F2a 602a Depth 4Ala 4Ald 4Alb 474 Organic Nitrogen C/N 4B1c 4B2 4c1 8cta Ext. Carbonata (ln.) carbon Field-1/3- Air-COLE 4e1das CaCOL Iron 1/3-15-1/3-to (1.1) ъ State Bar Dry 3tate Bar Bar 15-Bar as Fe Det Det Pct. Pct Pet Pct Pot 0-7 0.202 1.26 3,25 1.36 0.028 25.0 24.9 13.7 0.14 5.8 7-12 1,48 0.136 11 7 4 1.24 1.23 1.35 0.032 29.0 27.5 13.9 0.17 5.8 12-16 11.08 0.103 ш 1.4 1.2 6.0 16\_22 0.63 0.06 1.4 1.20 1.20 1.32 0.032 28.3 26.6 13.4 0.16 6.0 0.51 22-27 0.053 10 1.3 1.20 1.18 1.30 0.032 28.4 26.5 13.1 0.16 6.1 27-34 1.3 1.2 c 12.6 <u>6,0</u> 34-42 0.22 1.4 1.3 c 11.7 6.1 b.17 42-49 1.42 1.3 1.33 1.30 0.028 28.8 28.1 12.2 0.21 6.1 49-57 0.13 1.34 1.30 1.42 0.028 27.4 28.8 6.2 13.2 0.20 57-68 68-74 b.13 1.3 1.3 c 12.0 6.1<u>1</u> 1.34 1.2 0.024 30.1 1.30 1.40 28.6 12.6 0.21 6.3 70\_Ŕ1 - (a) 1a.4 15.4 6.3 0.10 81-87 0.7 12.5 6.5 Extractable bases 5Bla 6ніа Cat. Exch. Car 8D3 Base saturation 6N2a 602a 6P2a 602a Ext. 5A3a 5Ala 503 5C1 Depth Sum Actidity NHD, OAC Ca/Mg Stm NH, OA (In.) Ca Sum Me Na ĸ Debions Cations 4.8 6.1 15.5 9.1 0.1 0.8 21.2 30.3 | 22.2 3.2 70 95 14.9 7-12 0.1 0.6 21.7 9.0 7.1 2.4 30.7 22.2 98 71 12-16 14.8 76 79 81 6.5 0.1 0.6 22.0 29.1 21.7 2.3 າດາ 14.7 16-22 7.0 0.1 0.7 22.5 28.4 2.1 TO A 22-27 14.3 7.0 21.9 0.1 0.6 22.0 5.0 27.0 2.0 100 13.9 6.8 4.9 27-34 0.2 0.6 21.5 26.4 20.7 81 2.0 104 34-42 13.6 6.6 21.0 0.6 4.9 0.2 25.9 20.0 81 2.1 105 14,1 42-49 7.0 21.9 4.0 0.2 lo.6 25.9 20.6 85 106 2.0 49-57 57-68 14.4 26.7 7.3 0.3 85 0.6 22.6 4.1 20.9 2.0 108 13.9 0.6 26.1 22.3 3.8 20.6 85 108 1.9 22.7 3.5 22.6 4.3 22.8 2.4 68-74 13.9 7.9 0.3 0.6 26.2 21.1 1.8 87 801 79-81 |8<u>.2</u> |8.5 13.6 0.2 lo.6 27.8 20.4 7.7 Ai 111 81-87 13.4 25.2 20.1 0.2 0.7 1.6 90 113 Hatios to Clay 8DL Fe-Mn nodules: > 50 percent (1-0.1 mm). Depth 15-Ba NH<sub>L</sub>OAC Ext. b. 13 kg/m<sup>2</sup> to 60 inches (Method 6A). (In) Water Iron CEC Estimated. 0.73 0.039 0.45 0.68 7-12 0.043 0.43 0.045 0.44 12-16 0.69 16-22 lo.71 22-27 0.76 0.045 0.45 0.048 0.46 0.76 0.049 0.45 0.049 0.46 0.049 0.49 0.049 0.45 34-42 lo.78 42-49 0.77

49-57

57-68

68-74

79-81

81-87

0.78

0.77

0.79

0.71

0.74

0.045 0.47

<u>|0.54</u>

0.026 0.46

Pedon classification: Typic Hapludoll; fine-silty, mixed, mesic.

Series classification: (Same as pedon) .

Soil: Marshall silty clay loam.

Soil no.: \$63-Iowa-83-3 (LSL Nos., 18375 - 18387).

Location: Shelby County, Iowa, 605 feet south and 1,432 feet west of center of road corner in the NE's NW's sec. 28, T. 78 N., R 38 W., (approximately 3 miles north of Walnut, Iowa).

Vegetation and land use: Alfalfa; cropland.

Parent material: Wisconsin loess.

Elevation: 6.94 feet lower in elevation than S63-Iowa-83-1 in Shelby County transect.

Physiography: Unstable sideslope of an interfluve near the cove position formed by a drainageway.

Slope: About 6 to 7 percent toward the west-northwest.

Drainage: Well drained. Moisture: Moist to 87 inches.

Permeability: Moderate. Ground water: Below 87 inches.

Root distribution: Roots are abundant from 0 to 12 inches, common from 12 to 34 inches, and few from 34 to

68 inches.

Described by: R. I. Dideriksen and C. S. Fisher.

(Colors are for moist soil unless otherwise stated)

Ap 18375 0 to 18 cm (o to 7 inches). Very dark brown (10YR 2/2) light silty clay loam, dark gray (10YR 4/1) to grayish brown (10YR 5/2) dry; very dark grayish brown (10YR 3/2) when kneaded; weak medium subangular blocky structure parting to weak fine granular; friable; few fine and medium root channels; weak plow sole at 5 to 7 inches; slightly acid (pH 6.2); clear smooth boundary.

A3 18376 18 to 30 cm (7 to 12 inches). Very dark grayish brown (10YR 3/2) light to medium silty clay loam, grayish brown (10YR 5/2) dry; few brown (10YR 4/3) peds; very dark grayish brown (10YR 3/2) to dark brown (10YR 3/3) when kneaded; weak fine subangular blocky and fine granular structure; friable; many fine and very fine root channels; few root fills of dark material from above; slightly acid (pH 6.4); clear smooth boundary.

B1 18377 30 to 40 cm (12 to 16 inches). Dark brown (10YR 3/3) and brown (10YR 4/3) medium silty clay loam, grayish brown (10YR 5/2) and pale brown (10YR 6/3) dry; some very dark grayish brown (10YR 3/2) stains on faces of peds; kneaded color the same; weak fine subangular blocky structure; friable; few dark root fills and wormcasts; common fine and very fine inped tubular pores; slightly acid (pH 6.4); clear smooth boundary.

B21 18378 40 to 55 cm (16 to 22 inches). Brown (10YR 4/3) light to medium silty clay loam, pale brown (10YR 6/3) dry; brown (10YR 4/3) to yellowish brown (10YR 5/4) when kneaded; weak fine subangular blocky structure; friable; pores as above; few very thin discontinuous clay films of dark brown (10YR 3/3); few darker wormcasts; slightly acid (pH 6.4); gradual smooth boundary.

B22 18379 55 to 68 cm (22 to 27 inches). Brown (10YR 4/3) light silty clay loam; few fine grayish brown (2.5Y 5/2) mottles; yellowish brown (10YR 5/4) when kneaded; weak fine subangular blocky structure; friable; pores as above; few thin discontinuous clay films on some peds; slightly acid (pH 6.4); clear smooth boundary.

68 to 85 cm (27 to 34 inches). Color, texture and mottles like B22 horizon except few fine brown (7.5YR 4/4) mottles; weak medium prismatic structure parting to weak medium and fine subangular blocky; friable; pores as above; few thin discontinuous clay films on vertical ped faces; few very fine soft dark brown to black accumulations of oxides; few dark Wormcasts; few 12-inch spherical voids; slightly acid (pH 6.4); gradual smooth boundary.

921 18391 95 to 108 om (3/ to // tochas) Torturo "Triplines and mession like P12 besterns orlanged



U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC MATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

SOIL NO - - - - - S701A-67-4

GENERAL METHODS- - -1A,1818,2A1,28

COUNTY - - - MONONA

SAMPLE NOS. 7011152-7011158

NOVEMBER 1975

|             |                                                  |                                                              | 818,24                  |                    |                                                                                           |                                                      |                                                               |                                                                         |                                                                                 |                                                                                            |                                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                            |
|-------------|--------------------------------------------------|--------------------------------------------------------------|-------------------------|--------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HORI        | ZON                                              | SAND<br>2-<br>+05                                            | SILT<br>-05-            | CLAY<br>LT<br>.002 | CLAY<br>LT<br>.0002                                                                       | vcos<br>2-                                           | CORS<br>1-                                                    | SAND -<br>MEDS<br>-5-<br>-25                                            | FNES<br>.25-                                                                    | VFNS<br>-10-                                                                               | COSI<br>-05<br>-02                                                                                  | -SILT-<br>FNSI<br>.02<br>.002                                                                                  | VF\$1<br>•005-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FAML<br>TEXT<br>SAND<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INTR<br>II<br>•2-<br>•02                                   | FINE<br>CLAY<br>TO<br>CLAY                                                                                                                | CFTA<br>CO3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 801<br>15-<br>8AR<br>TO                                                                                                                                                                                                    |
|             |                                                  |                                                              |                         |                    |                                                                                           |                                                      |                                                               | • - PCT                                                                 | LT 2                                                                            | IM                                                                                         |                                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            | ) PCT                                                                                                                                     | PGI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GL-AY                                                                                                                                                                                                                      |
| AP          |                                                  |                                                              |                         |                    |                                                                                           | .0                                                   |                                                               |                                                                         | - 3                                                                             | 2.1                                                                                        |                                                                                                     |                                                                                                                | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35-9                                                       | 48                                                                                                                                        | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •47                                                                                                                                                                                                                        |
|             |                                                  |                                                              |                         |                    |                                                                                           |                                                      |                                                               | -1                                                                      | .3                                                                              |                                                                                            |                                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -49                                                                                                                                                                                                                        |
|             |                                                  |                                                              |                         |                    |                                                                                           |                                                      |                                                               | .0                                                                      |                                                                                 |                                                                                            |                                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                                                                                                           | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 41                                                                                                                                                                                                                       |
| 264G        |                                                  | - 2                                                          | 39.8                    | 60.0               |                                                                                           | .0                                                   | .0                                                            | •0                                                                      | -0                                                                              | .2                                                                                         | 2.6                                                                                                 | 37.2                                                                                                           | 14-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.8                                                        |                                                                                                                                           | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 38                                                                                                                                                                                                                       |
|             |                                                  |                                                              |                         |                    |                                                                                           |                                                      |                                                               |                                                                         |                                                                                 |                                                                                            |                                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .42<br>.50                                                                                                                                                                                                                 |
| 2000        |                                                  | 20.0                                                         | 0147                    | 1210               |                                                                                           | ***                                                  | ••                                                            | •                                                                       | 702                                                                             | .,,,                                                                                       | 7747                                                                                                | 23.7                                                                                                           | 24-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 02.00                                                      |                                                                                                                                           | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                    |
| (PARTI      | CLE 5                                            | IZE AN                                                       | ALYSIS                  | . MM.              | 3B, 3B1                                                                                   | , 382                                                | ) ( BU                                                        | K DENS                                                                  | ITY I                                                                           | (                                                                                          | - WAT                                                                                               | ER CON                                                                                                         | ITENT-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CARBO                                                      | UNATE                                                                                                                                     | (P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 3                                                                                                                                                                                                                        |
| VOL-        | (                                                |                                                              | WE                      | IGHT -             |                                                                                           |                                                      | ) 4A1D                                                        | 4A 1H                                                                   | 401                                                                             | 4B1C                                                                                       | 4B L C                                                                                              | 482                                                                                                            | 461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6E18                                                       | 3 <b>41</b> A                                                                                                                             | 8Ç1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8C1E                                                                                                                                                                                                                       |
|             |                                                  | 75-20                                                        | J 20-5                  | 5-2                |                                                                                           |                                                      |                                                               |                                                                         | COLE                                                                            |                                                                                            |                                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/2<br>CACL                                                                                                                                                                                                                |
| PCT         |                                                  | (                                                            | - PCT 1                 | LT 75              | )                                                                                         | LT20                                                 |                                                               |                                                                         |                                                                                 | PCT                                                                                        | PCT                                                                                                 | PCT                                                                                                            | CM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PCT                                                        | PCT                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                            |
| <del></del> |                                                  | ***                                                          |                         |                    |                                                                                           | TO                                                   | 1.34                                                          | 1 43                                                                    | 017                                                                             | 31 7                                                                                       | 24.3                                                                                                | 10.3                                                                                                           | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |                                                                                                                                           | 7 - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.5                                                                                                                                                                                                                        |
|             | ő                                                | -                                                            |                         |                    | 99                                                                                        |                                                      |                                                               |                                                                         |                                                                                 |                                                                                            |                                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.6                                                                                                                                                                                                                        |
| ŏ           | ŏ                                                | ō                                                            | ŏ                       | ō                  | 100                                                                                       | ō                                                    | 1.25                                                          | 1.33                                                                    | .021                                                                            | 36.7                                                                                       |                                                                                                     |                                                                                                                | .29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                          | 0                                                                                                                                         | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.6                                                                                                                                                                                                                        |
| 0           | 0                                                | 0                                                            | 0                       | 0                  | 100                                                                                       | 0                                                    | 1.20A                                                         |                                                                         | 110                                                                             | 20.2                                                                                       | 22.5                                                                                                | 18.6                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                          |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.5                                                                                                                                                                                                                        |
|             |                                                  |                                                              |                         |                    |                                                                                           |                                                      |                                                               |                                                                         |                                                                                 |                                                                                            |                                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.5<br>7.5                                                                                                                                                                                                                 |
| ő           | ŏ                                                | ŏ                                                            | ŏ                       | ő                  | 93                                                                                        | ŏ                                                    | 1.40A                                                         |                                                                         | *032                                                                            | 3440                                                                                       | ,,,,,                                                                                               | 6.3                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | £ * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                          | ŏ                                                                                                                                         | 7,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.6                                                                                                                                                                                                                        |
|             |                                                  |                                                              |                         |                    |                                                                                           |                                                      |                                                               |                                                                         |                                                                                 |                                                                                            |                                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                            |
| ORGANI      | C MAT                                            | TER }                                                        | IRON                    | PHOS               | (+ -EX                                                                                    | TRACT                                                | ABLE B                                                        | ASES 58                                                                 | 441                                                                             | ACTY                                                                                       | AL                                                                                                  | (CAT                                                                                                           | EXCH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RATIO                                                      | CA                                                                                                                                        | ( BASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SATI                                                                                                                                                                                                                       |
|             |                                                  |                                                              |                         |                    |                                                                                           |                                                      |                                                               |                                                                         |                                                                                 | 6H1A                                                                                       |                                                                                                     | 5A3A                                                                                                           | 5 A6 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8D3                                                        | 5F                                                                                                                                        | 5C 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 501                                                                                                                                                                                                                        |
|             | NITG                                             |                                                              | EXT                     | TOLF               | ÇA                                                                                        | MG                                                   | NA                                                            | ×                                                                       | SUM                                                                             | BACL                                                                                       | KCL                                                                                                 |                                                                                                                | NHAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NHAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NHAC                                                                                                                                                                                                                       |
|             | O.C.T                                            |                                                              |                         | DC T               |                                                                                           |                                                      |                                                               | MEG                                                                     |                                                                                 |                                                                                            |                                                                                                     |                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PCT                                                                                                                                                                                                                        |
|             |                                                  |                                                              |                         |                    |                                                                                           |                                                      |                                                               |                                                                         |                                                                                 |                                                                                            |                                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                            |
| 1.390       |                                                  |                                                              |                         |                    |                                                                                           |                                                      |                                                               |                                                                         |                                                                                 |                                                                                            |                                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                            |
|             |                                                  |                                                              |                         |                    |                                                                                           |                                                      |                                                               |                                                                         |                                                                                 |                                                                                            |                                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                            |
|             |                                                  |                                                              |                         |                    |                                                                                           |                                                      |                                                               |                                                                         | 36.5                                                                            |                                                                                            |                                                                                                     |                                                                                                                | 29.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                            |
| .62         |                                                  |                                                              | 1.3                     |                    | 32.90                                                                                     | 8.10                                                 |                                                               | 1.2                                                                     | 42.7                                                                            |                                                                                            |                                                                                                     |                                                                                                                | 37.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                            |
| -61         |                                                  |                                                              | 1.2                     |                    | 26.2D                                                                                     | 6.9D                                                 |                                                               |                                                                         |                                                                                 |                                                                                            |                                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                            |
| .53         |                                                  |                                                              | - 8                     |                    | 15.00                                                                                     | 3.40                                                 | ••                                                            | .0                                                                      | 14.0                                                                            |                                                                                            |                                                                                                     |                                                                                                                | 12.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | f + v I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                            |
| 8E1         | 8C 1 B                                           | PASTE1<br>8A<br>H2O<br>PCT                                   | NA<br>5D2<br>ESP<br>PCT | NA<br>SE<br>SAK    | 805<br>TOTL<br>SOLU                                                                       | 6F1A                                                 | BAlA<br>EC<br>MMHOS/                                          | 6N1B<br>CA                                                              | 6018<br>MG                                                                      | 6P1A<br>NA                                                                                 | 691A<br>K                                                                                           | 611A<br>CO3                                                                                                    | HC03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CL<br>CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6LIA<br>504                                                | MIA<br>NO3                                                                                                                                | 4F1<br>LQID<br>LMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4F2<br>PLST                                                                                                                                                                                                                |
|             |                                                  |                                                              |                         |                    |                                                                                           | .==                                                  |                                                               |                                                                         |                                                                                 |                                                                                            |                                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                                                                                                           | 37E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                         |
|             |                                                  |                                                              |                         |                    |                                                                                           |                                                      |                                                               |                                                                         |                                                                                 |                                                                                            |                                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                            |
|             |                                                  |                                                              |                         |                    |                                                                                           |                                                      |                                                               |                                                                         |                                                                                 |                                                                                            |                                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                                                                                                                                                                                                                         |
|             |                                                  |                                                              |                         |                    |                                                                                           |                                                      |                                                               |                                                                         |                                                                                 |                                                                                            |                                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                                                                                                           | 38E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                         |
| 980         | 7.4                                              | 79.1                                                         | ı                       |                    | 440                                                                                       |                                                      | .80                                                           | 5.8                                                                     | 1.6                                                                             | . 8                                                                                        | .4                                                                                                  |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                                                                                                           | 38E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                         |
| 980         | 7.4                                              | 79.1                                                         | 1                       |                    | 440                                                                                       |                                                      | .80                                                           | 5.8                                                                     | 1.6                                                                             | .8                                                                                         | .4                                                                                                  |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                            |
|             | C1 C2 C3G C4GG C4GG C7GG C7GG C7GG C7GG C7GG C7G | C1 C2 C2C3G C4C4G C2C5G CC6G CC6G CC6G CC6G CC6G CC6G CC6G C | 2                       | 27 .055 .002       | 27 .05 .002 .002  .005 .002 .002  .006 .002 .002  .007 .008 .008 .008 .008 .008 .008 .008 | SAND SILT CLAY CLAY 205- LT LT .05 .002 .002 .0002 ( | SAND SILT CLAY CLAY VCOS 205- LT LT 205 .002 .002 .0002 1  AP | SAND SILT CLAY CLAY VCOS CORS 205- LT LT 2- 105002 .0002 .0002 1 -5  AP | SAND SILT CLAY CLAY VCUS CORS MEDS 205 LT LT 2- 1505 .002 .002 .0002 1 .5 .25 ( | SAND SILT CLAY VCOS CORS MEDS FRES 205- LT LT 2- 152505 .05 .002 .002 .0002 1 -5 .25 .10 ( | SAND SILT CLAY VCOS CORS MEDS FNES VFNS 205- LT LT 2- 152510 .05 .002 .002 .0002 1 .5 .25 .10 .05 ( | SAND SILT CLAY VCOS CORS MEDS FRES VFRS COSI 205- LT LT 2- 15251005 .05 .002 .002 .0002 1 -5 .25 .10 .05 .02 ( | SAND SILT CLAY CLAY VCOS CORS MEDS FNES VFNS COSI FNSI 20-05-01 LT LT 2-1-0-25-02-000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -000 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 -05-02 - | SAND SILT CLAY CLAY COS CORS MEDS FNES VFNS COSI FNSI VFSI 2-0-05 .002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 . | 205- LT LT 2- 152510 .05 .02 .002 .002 .002 .002 .002 .002 | SAND SILT CLAY CLAY VCOS CORS MEDS FNES VFNS COSI FNSI VFSI TEXT II  2- 05 - 05 - LT LT 2- 1- 5251005 .02 .002 .002 .002 .002 .002 .002 . | SAND SILT CLAY CLAY VCUS CORS MEDS FNES VFNS COSI FNSI VFSI TEXT II CLAY CLOS COS - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0. | SAND SILT CLAY CLAY VCOS CORS MEDS FNES VFNS COST FNSI VFSI TEXT II CLAY CO305 -002 .002 .002 .002 1 -5 .25 .10 .05 .02 .005 .002 .002 .002 .002 CLAY -05 .002 .002 .002 1 -5 .25 .10 .05 .02 .002 .002 .002 .2-1 .02 CLAY |

Pedon classification: Aquic Udifluvent; fine-silty over clayey, mixed, (calcareous) mesic. Series classification: Aquic Unifluvent; coarse-silty over clayey, mixed, (calcareous) mesic.1/

Soil: Modale silt loam.

Soil no.: S70-Iowa-67-4 (LSL Nos. 70L1152 - 70L1158).

Location: Monona County. Iowa: about 4 miles west-southwest of Whiting. Iowa: 1.905 feet north and 135 feet

east of road center from the southwest corner of sec. 8, T. 84 N., R. 46 W.

Vegatation and land use: Corn, harvested; cropland, irrigated.

Parent material: Recently deposited silty alluvium about 2 feet thick which is underlain by grayish silty clay or clay 2 to many feet thick. The sediments that make up material I are variable over short distances, tending to be near and either side of the coarse silty-fine silty line in clay content.

Physiography: Nearly level bottomlands. Site about 2 miles east of Missouri River and about 12 miles west of uplands.

Relief: Nearly level.

Slope: Less than 1 percent.

Drainage: Moderately well drained and somewhat poorly drained.

Erosion: None.

Ground water: None.

Permeability: The upper part is moderately permeable, the IIC horizon is very slowly to slowly permeable.

Described by: J. R. Culver, C. S. Fisher, J. R. Worster, and F. F. Riecken, October 28, 1970.

Ap 70L1152 0 to 20 cm (0 to 8 inches). Very dark grayish brown (10YR 3/2) light silt loam, grayish brown (10YR 5/2) dry; cloddy weak fine and very fine subangular blocky structure parting to weak fine granular structure; very friable; mildly alkaline; slightly effervescent; abrupt smooth boundary.

C1 70L1153 20 to 41 cm (8 to 16 inches). Stratified dark grayish brown (2.5Y 4/2) grayish brown (2.5Y 5/2), and very dark grayish brown (2.5Y 3/2) light silt loam, few fine prominent strong brown (7.5YR 5/6) mottles; horizontal cleavage parting to weak fine granular structure; friable; mildly alkaline; strongly effervescent; gradual smooth boundary.

C2 70L1154 41 to 61 cm (16 to 24 inches). Stratified grayish brown (2.5Y 5/2) and dark grayish brown (2.5Y 4/2) silt loam, few fine distinct yellowish brown (10YR 5/6) mottles; massive; horizontal cleavage; few light gray spots, few very dark grayish brown (10YR 3/2) wormcasts; friable; mildly alkaline; strongly effervescent; clear smooth boundary.

IIC3g 70L1155 61 to 76 cm (24 to 30 inches). Dark grayish brown (2.5Y 4/2) light silty clay; few fine prominent yellowish red (5YR 4/6) mottles; horizontal cleavage parting to moderate fine and medium angular and subangular blocky structure; very firm; slightly effervescent; mildly alkaline; gradual boundary.

IIC4g 70L1156 76 to 109 cm (30 to 43 inches). Dark g ayish brown (2.5Y 4/2) silty clay, faces of peds very dark grayish brown (2.5Y 3/2), few fine prominent strong brown (7.5YR 5/6) mottles; moderate very fine angular blocky structure; structure appears to be related to recent sedimentation; very firm; slightly effervescent; mildly alkaline; abrupt boundary.

IIC5g 70L1157 109 to 130 cm (43 to 51 inches). Stratified dark grayish brown (2.5Y 4/2) light silty clay with thin lenses of silt loam, few fine prominent gray (5Y 5/1) and strong brown (7.5YR 5/6) mottles; horizontal cleavage parting to moderate very fine angular blocky structure; firm; grayish brown (2.5Y 5/2) silt coats on ped faces; strongly effervescent; mildly alkaline; clear smooth to wavy boundary.

IIC6g 70L1158 130 to 160 cm (51 to 62 inches). Stratified grayish brown (2.5Y 5/2), brown (10YR 5/3), dark grayish brown (2.5Y 4/2), and very dark grayish brown (10YR 3/2) silt loam with thin strata of very fine sandy loam to loamy fine sand; few fine prominent strong brown (7.5YR 5/6) mottles; massive with horizontal cleavage; friable; strongly effervescent; mildly alkaline.

1/This type location pedon averages slightly more clay in the upper part than allowed in a coarse-silty over clayey family.

```
SDIL CLASSIFICATION-UDOLLIC DEHRAQUALF
FINE, MONTMORILLONITIC, MESIC
SERIES - - - - - - PERSHING
                                                                                                                                               U. S. DEPARTMENT OF AGRICULTURE
SOIL CONSERVATION SERVICE MRTSC
SOIL SURVEY INVESTIGATIONS UNIT
LINCOLN, NEBRASKA
        SOIL NO - - - - - - - - S6910WA-68-2 COUNTY - - - MONROE. . . .
       GENERAL METHODS- - -1 A2A, 1818, 182,18
                                                                                    SAMPLE NOS. 6911012-6911020
                                    HOR1 ZON
                                                                                                                                                                                   → )RATIO
                                                                                                                                                                                       BDL
                                       2-
                                                        LT
                                                                                             -5-
-25
                                                                                             .5+ .25+ .10+ .05
.25 .10 .05 .02
- PCT LT 2MM - - - -
                                               -05-
                                                                   LT
                                                                            2-
                                                                                      1-
                                                                                                                                 - 02
                                                                                                                                  -02 -005-
-002 -002
                                                                                                                                                    SAND
                                                                                                                                                             . 2-
                                                                                                                                                                      CLAY
                                                                                                                                                                               CLAY
                                               .002 .002 .0002
                                                                                                                                                   2-.1
                                        .05
                                                                                      . 5
                                                                                                                                                             -02
           См
                                                                                                                                            ----- --- PCT
                                                                                                                                                                               PCT
                                                                                                                                                                                       CLAY
                       AP
A21
                                                        21.5
                                                                                                                   .5
                                                                                                                        31.6
                                                                                                                                 42.7
                                                                                                                                                      3.7 32.4
3.4 29.9
                                                                                                                                                                                          . 44
                                               73.6
70.7
                                                        22.6
25.7
                                                                                      1.6
                                                                                                                        29.2
                                                                                                                                 44.4
        020-028
                                      3 . BA
                                                                                                .8
.5
.2
.2
.3
.2
                                                                                                                   .4
                                                                 12.9
19.7
27.6
25.5
        028-038
                       A22
                                      3.6A
2.3A
                                                                                                                                                             28.5
                                                                                                                                                                                           40
                                                        35.5
44.3
41.9
                                               62.2
54.4
56.7
        038-053
                       81
                                                                                                         .5
                                                                                                                   .4
                                                                                                                        23.3
                                                                                                                                 38.9
                                                                                                                                                             24.0
21.1
       053~069
069-091
                       821T
822T
                                      1.3A
1.4A
                                                                                                                                                       .9
                                                                                                                                                                        62
                                                                                                                                                                                           -45
                                                                                       .3
                                                                                                                        22.8
25.0
27.3
                                                                                                                                 33.9
35.4
36.1
                                                                                                                                                             23.5
                                                                              .0
                                                                                                                                                       Ī
                                      1.6A
1.3A
                                               60.4
                                                                              .Õ
        091-109
                       831T
                                                        38.0
                                                                                                                                                                      ....5.7.
                       832T
                                                        35.3
                                                                                                                                                             28.0
                                                                  19-0
                                                                                                                                                       <u>. 6</u> ..
                                                                                                                                                                                           -50.
                 (ARBONATE (+ -PH + -)
6E1B 3ALA BCLA BCLE
       DEPTH
                                                                                                                                    CONTENT-
                                                                                                                       481C 482
                                                                                                                                          4C1
WRD
CM/
                                                                                                                                                              LT
2
        CM
                                                                                                                                                               PCT
                                                                                                                                                                        PCT
       000-020
                                                                   96
97
                                                                                                                                   9.5
                                                                                                                                                  2.6C
                                0
                                                  0
                                                                                                                                            .26
                                                                                                                                                                                 5.8
                                                                                                                                                                                        5.4
       020~028
                                         Ö
                                                                                  1.44
1.408
1.39
                                0
                                                  O
                                                                                                      -016
       028-038
038-053
                                                                   97
                                                                                                                                 10.4
                                                                                                                                                    2.BC
                                ō
                                                                                                      .057
                                                                                                                                             -17
                                         O
                                                           0
                                                                   98
                                                                                             1-64
                                                                                                                                                                                 5.0
                                                                                                                                                                                          4.6
                                                                                                                        32.0
33.4
32.7
29.9
       053-069
069-091
                                                                   99
                                                                                                               34.1
34.3
                                                                                                                                 20.0
                                                                                                                                            .15
.18
.19
                                                                                                                                                    2.0C
                                                           0
                                                                                             1.83
                                                                                                      .145
                                                                                  1.36
                                                                                             1.83
                                                                                                                                                                                 5.4
                                                                                                                                                                                          4.9
       091-109
109-135
                                o
                                                                   99
99
                                                                                  1.38
                                                                                             1.80
                                                                                                      .093
                                                                                                               34.4
                                                                                                                                 18.6
                                                                                                                                                    1.5C
2.6C
                                                                                                      .062
       135-155
                                                                                                                                                    1.90
       DEPTH (ORGANIC MATTER ) IRON PHOS (--EXTRACTABLE BASES 584A--) ACTY
6A1A 681A C/N 6C2A 651A 6N2E 6D2D 6P2A 6Q2A 6H1A
DRGN NITG EXT TOTL CA MG NA K SUM BACL
                                                                                                                                 (CAT EXCH) RATIO RATIO
5A3A 5A6A 8D1 8D3.
EXTB NHAC NHAC CA
ACTY TO TO
                                                                                                                          ΔI
                                                                                                                                                                                (BASE SAT)
                                                                                                                                                  SD1
NH AC
TO
                                                                                                              6HLA 6GID
BACL KCL
                                                                                                                                                                       .5E..
                                                                                                                                                             803....
                                                                                                                                                                              -SC3-
                                                                                                                                                                                        SC1.
                                                                                                                                                                               EXT8
                                                                                                                        KCL
EXT
                                                                                                                                                                       SAT
                                                                                                                                                                                        NHAC
                    CARS
                                                                                                      EXTB
                                                                                                               TEA
                                                        PCT (-------
                             PCT
                                                                                              -MEQ / 100
                                                                                                                                                                                        BET
          CM
                    PCT
                                               PCT
                                                                                                                G-
                                                                                                                                                    CL AY
                                        12
10
9
7
                                                                 12.2
8.5
7.8
10.7
       000-020 1.85D
020-028 1.01
                                                                           2.7
                                                                                              0.4
                                                1.0
                                                                                                     15.4
                                                                                                                7.4
                                                                                                                          0 . l
                                                                                                                                 22.8
                                                                                                                                                                         66
52
                                                                                                                                                                                  60 75
                                                                                                                          0.1
0.4
0.7
                              .097
                                                0.9
                                                                                     0.2
                                                                                                      12.2
                                                                                                                 8.0
                                                                                                                                 20.2
                                                                                                                                                    0.72
                                                                                                                                           16.2
                                                                                                                                                               2.7
       028-038 0.57
038-053 0.42
                              .062
                                                 1.2
                                                                            4.2
7.5
                                                                                     0.2
                                                                                              0.4
                                                                                                                 7.6
                                                                                                                                                                         45
                              .060
                                                 1.2
                                                                                                      19.2
                                                                                                                 8.6
                                                                                                                                 27.8
                                                                                                                                           24-0
                                                                                                                                                    0.68
                                                                                                                                                               1.4
                                                                                                                                                                                  69
                                                                                                                                                                                           80
       053-069 0.42
069-091 0.28
091-109 0.19
                               .063
                                                                 14.9
15.9
15.4
15.0
                                                                          10.8
                                                                                     0.5
0.6
0.7
0.7
                                                                                              0.9
                                                                                                      27.1
                                                                                                               10.0
8.3
7.1
                                                                                                                          0.8
                                                                                                                                 37.1
36.9
                                                                                                                                          31.3
                                                                                                                                                    0.71
                                                                                                                                                               1.4
1.4
1.4
1.5
                                                                                                                                                                         48
                                                                                                                                                                                  73
78
                                                 1.3
                                                                                                                                                                                           87
92
                                                 1.1
                                                 1.1
                                                                           10.8
                                                                                              0.7
                                                                                                      27.6
                                                                                                                                          28.9
                                                                                                                                  34.7
                                                                                                                                                    0.76
                                                                                                                                  32.0
                                                                                                                                                    0.78
                                                                                                                                                                                            96
       135-155 0-12
                                                                           10.0
                                                                                               0.7
                                                                                (-----) ATTERBERGE 8A1A 6N18 6D1B 6P1A 6Q1A 611A 6J1A 6K1A 6L1A 6M1A 4F1 4F2 EC CA MG NA K CO3 HCO3 CL SO4 NO3 LQID PLST
                  (SATURATED PASTE)
                                                                SALT
                   8E1 8C18
REST PH
                                             502
                                      84
                                                        SF
                                                                805
                                                                         6F1A
                                   H20
                                                                                EC
MMHDS/
                    OHM-
                                                                SOLU
                                                                                                                                                                               LMIT INDX
                                                                                                  PCT
                                                                         PCT
          CH
       000-020
                                                                                                                                                                               36.
                                                                                                                                                                                        12.
       020-028
       028-038
038-053
                                                                                                                                                             . . ____ 35 ___ 13
       053-069
       190-920
       091-109
109-135
                    2500 5.2 62.6
      CLAY MINERALOGY (7A2C). PLACEMENT (S691A-68-2) MONTMORILLONITIC.

069-91 MT3 M12 KK2.

COMMENTS—- CLAYS FAIRLY WELL ORDERED.

RELATIVE AMOUNTS—- (X-RAY) 5 = DOMINANT 4 = ABUNDANT 3 = MODERATE 2 = SMALL 1 = TRACE. (DTA). AS PERCENT.

MINERAL CODE—- MT = MONTMORILLONITE M1 = MICA KK = KAOLINITE

(A) FE/MN NODULES COMPRISE MORE THAT 75 PCT OF THE SAND

(B) BULK DENSITY ESTIMATED FOR HORIZON FROM 28-38 CM.

(C) MICRO-PENETRATION RESISTANCE — A ROD 0.6 CM DIA 15 SLOWLY PUSHED INTO BULK DENSITY CLDD. EQUILIBRATED AT 1/10—BAR.

A DISTANCE OF 0.6 CM USING A POCKET PENETROMETER. UNITS ARE FORCE (KG) AND NOT ESTIMATES OF UNCONFINED COMPRESSIVE STREMSTH.
               STRENGTH.
        (D) ORGANIC CARBON IS 10 KG PER SO M TO A DEPTH OF 1 METER (METHOD 6A).
             TOWA STATE HIGHW
```

Pedon classification: Udollic Ochraqualf; fine, montmorillonitic, mesic.

Series classification: (Same as pedon).

Soil: Pershing silt loam.

Soil no.: S69-Iowa-68-2 (LSL Nos. 69L1012 - 69L1020).

Location: Monroe County, Iowa, 225 feet west and 60 feet north of gate along north-south section line road in the SE4 NE4 Sec. 6, T. 72 N., R. 18 W.

Vegetation and land use: Soybeans; cropland.

Parent material: Deoxidized-leached and oxidized-leached loess (Wisconsin) of low sand content (less than 5 percent).

Physiography: Convex ridgecrest; slight slope to the north near head of drain. Adjoins nearly level relief of slightly higher elevation.

Relief: Gently sloping convex upland ridge.

Slope: 2 percent, north aspect.

Drainage: Somewhat poorly and moderately well drained.

Ground water: None.

Permeability: Very slow.

Described by: J. D. Highland, J. R. Culver and T. E. Fenton; November 6, 1969.

(Colors are for moist conditions unless otherwise stated)

Ap 69L1012 0 to 20 cm (0 to 8 inches). Very dark gray (10YR 3/1) silt loam, gray (10YR 5/1) dry, kneaded very dark gray (10YR 3/1); weak cloddy breaking to weak fine granular structure; friable; few fine dark brown (7.5YR 3/2) soft accumulations of oxides, slightly acid; abrupt smooth boundary.

A21 69L1013 20 to 28 cm (8 to 11 inches). Dark grayish brown (10YR 4/2) silt loam, very dark gray (10YR 3/1) and dark gray (10YR 4/1) coatings on plates, light brownish gray (10YR 6/2) dry; few fine distinct mottles of light olive brown (2.5Y 5/4); weak medium platy structure; friable; discontinuous light gray (10YR 7/1 dry) silt coats; few fine dark brown (7.5YR 3/2) soft accumulations of oxides; medium acid; clear smooth boundary.

A22 69L1014 28 to 38 cm (11 to 15 inches). Crayish brown (10YR 5/2) silt loam, dark gray (10YR 4/1) coatings on plates, few fine distinct mottles of light olive brown (2.5Y 5/4); weak medium platy structure; friable; continuous light gray (10YR 7/1 dry) silt coats; few fine dark brown (7.5YR 3/2) soft accumulations of oxides; strongly acid; clear smooth boundary.

<u>B1 69L1015 38 to 53 cm (15 to 21 inches)</u>. Mottled grayish brown (2.5Y 5/2) and yellowish brown (10YR 5/4), grayish brown (10YR 5/2) coatings on peds; medium silty clay loam; kneaded yellowish brown (10YR 5/4); moderate fine and very fine subangular blocky structure; friable; continuous light gray (10YR 7/1 dry) grainy ped coats; few fine brown (7.5YR 4/4) and dark reddish brown (5YR 3/2) soft accumulations of oxides; strongly acid; clear smooth boundary.

B21t 6911016 53 to 69 cm (21 to 27 inches). Mottled grayish brown (2.5Y 5/2) and yellowish brown (10YR 5/6) medium silty clay; moderate fine and very fine subangular and angular blocky structure; very firm; continuous dark grayish brown (10YR 4/2) and few discontinuous very dark gray (10YR 3/1) clay films; few very dark gray (10YR 3/1) clay-filled root pores; common fine dark brown (7.5YR 3/2) and dark reddish brown (5YR 2/2) soft accumulations of oxides; medium acid; gradual smooth boundary.

B22t 69L1017 69 to 91 cm (27 to 36 inches). Mottled brown (10YR 5/3) and yellowish brown (10YR 5/6) light silty clay in upper part, heavy silty clay loam in lower part; grayish brown (2.5Y 5/2) on faces of prisms; moderate coarse prismatic structure parting to moderate fine subangular and angular blocky structure; very firm; few discontinuous very dark gray (10YR 3/1) clay films; continuous dark gray (10YR 4/1) clay flows in old root channels; common fine dark brown (7.5YR 3/2) and dark reddish brown (5YR 2/2) soft accumulations of oxides; medium acid; gradual smooth boundary.

B31t 69L1018 91 to 109 cm (36 to 43 inches). Mottled grayish brown (2.5Y 5/2) yellowish brown (10YR 5/6), and strong brown (7.5YR 5/6) medium silty clay loam; moderate coarse prismatic structure parting to weak medium subangular blocky; firm; deoxidized and leached weathering zone; few discontinuous dark gray (10YR 4/1) clay films on prism faces; common dark gray (10YR 4/1) clay flows in pores; many fine soft dark reddish brown (5YR 2/2) accumulations of oxides; slightly acid; gradual smooth boundary.

B32t 69L1019 109 to 135 cm (43 to 53 inches). Mottled olive gray (5Y 5/2), yellowish brown (10YR 5/6), and strong brown (7.5YR 5/6) medium silty clay loam; grayish brown (2.5Y 5/2) on faces of prisms; moderate coarse prismatic structure; firm; deoxidized and leached weathering zone; few discontinuous dark gray (10YR 4/1) clay films on prism faces, few very dark gray (10YR 3/1) clay-filled pores; many fine soft and hard dark reddish brown (5YR 2/2) accumulations of oxides; slightly acid; gradual smooth boundary.

B33 69L1020 135 to 155 cm (53 to 61 inches). Mottled olive gray (57 5/2) and yellowish brown (10YR 5/6) light silty clay loam; weak coarse prismatic structure; deoxidized and leached weathering zone; firm; very few discontinuous very dark gray (10YR 3/1) clay films on prisms; few dark gray (10YR 4/1) and black (10YR 2/1) clay-lined pores; many fine dark reddish brown (5YR 2/2) soft accumulations of oxides, slightly acid.

U. S. DEPARTMENT OF AGRICULTURE SDIL CONSERVATION SERVICE METSC SOIL SURVEY INVESTIGATIONS UNIT LINCOLN, NEBRASKA

SOIL NO - - - - - S6910WA-4-4

COUNTY - - - APPANOUSE

GENERAL METHODS- - - LAZA-1818-182-18

SAMPLE NOS. 6911021-6911030

| DEPTH   | HORIZON | (        |      |      |       | 1          | PART ICL   |               |      |      |         |       |       |      |          |      |       | PATIO             |
|---------|---------|----------|------|------|-------|------------|------------|---------------|------|------|---------|-------|-------|------|----------|------|-------|-------------------|
|         |         | SAND     | SILT | CLAY | CLAY  | vcos<br>2- | CORS<br>1- | MEDS          | FNES | VFNS | COSI    | FNSI  | VF S1 | TEXT | 11       | CLAY | C 03- | 8D1<br>15-<br>BAR |
| CM      |         | .05<br>( | 002  | .002 | .0002 |            | .5         | - 25<br>- PCI | .10  | .05  | .02     | -002  | .002  | 2-,1 | •02<br>) | CLAY | PCT   | TO<br>CLAY        |
| 000-010 | A1      | 4.2A     | 74.6 | 20.5 |       | .5         | 1.8        | _ 1.0         |      |      | 30.2    | 44.4  |       | 4.3  | 31.3     |      |       | -48               |
| 10-033  | A2      | 3.8A     | 69.8 | 26.4 |       | .3         | 1.4        | . 9           | .8   | -4   | 25.8    | 44-0  |       | 3.4  | 26.6     |      |       | -42               |
| 33-043  | 81      | 2-3A     | 61.0 | 36.7 |       | 1.         |            | 5             |      | 4    | 21.2    | 39.4  |       | 1.9  | 21.9     |      |       | 42                |
| 143-058 | B21T    | .8A      | 42.5 | 56.7 |       | .1         | .3         | .1            | -2   | . 1  | 13.6    | 28.9  |       | • 7  | 13.9     |      |       | .44               |
| 358-074 | 822T    | .6A      | 50.6 | 48.8 |       | 0          | -1         | -1            | .2   | - 2  | . 17.1. | 33.5  |       | . 4  | 17.4     |      |       | -45               |
| 74-091  | B23T    | .7A      | 58.9 | 40.4 |       | .0         | -1         | -1            | •2   | .3   | 18.7    | 40.2  |       | -4   | 19.1     |      |       | .48               |
| 91-109  | B317    | .8A      | 63.3 | 35.9 |       |            | - 1        | -1            | -2   | -4-  | -14-7   | 44.6  | 1     | 4    | 10.2     |      |       |                   |
| 109-142 | B32     | 1.1A     | 67.5 | 31-4 | 15.7  | .0         | •1         | - 2           | . 4  | .4   | 24.3    | 43.2  |       | .7   | 24.9     | 50   |       | .49               |
| 142-165 | Cl      | 5.4      | 66.2 | 28-4 |       | .1         | .9         | 1.3           | 2.1  | 1.0  | 21-4    | 44. 8 |       | 4.4  | 23.4     |      |       | .48               |
| 65-178  | CZ      | 11.6     | 63.4 | 25.0 | -     |            | 1.6        | 2.8           | 4.6  | 2.0  | 19.4    | 44.0  |       | 9.6  | 23.6     |      |       | -45               |

| DEPTH  |                 |                      |       |      |   | 38, 381    |             |             |                             |       | )(                           |                            |                          | TE NT-            | ):   | AVAIT    | (PH                |       | 1 |
|--------|-----------------|----------------------|-------|------|---|------------|-------------|-------------|-----------------------------|-------|------------------------------|----------------------------|--------------------------|-------------------|------|----------|--------------------|-------|---|
| СМ     | VOL.<br>GT<br>2 | (<br>GT<br>75<br>PCT | 75-20 | 20-5 |   | LT<br>-074 | 20-2<br>PCT | L/3-<br>BAR | 4A1H<br>QVEN<br>DRY<br>G/CC | COLE  | 481C<br>1/10<br>BAR .<br>PCT | 481C<br>1/3-<br>8AR<br>PCT | 482<br>15-<br>BAR<br>PCT | 4G1<br>WRD<br>GMZ |      | LBS/ACRE | 8C1A<br>1/1<br>H2O | 1/2   |   |
| •      | . • .           |                      | •     |      |   | •          |             |             | -, ••                       |       | . • .                        |                            |                          |                   |      |          | ·•                 |       |   |
| 00-010 |                 |                      |       |      | 0 | 96         |             | 1.10B       |                             |       |                              |                            | 9.8                      |                   |      | 8.5      | 5.3                | 4.9   |   |
| 10-033 |                 | ŏ                    | ō     | ŏ    | ō | 97         |             | 1.33        | 1.47                        | .034  | 29.8                         | 26.9                       | 11.0                     | .21               | 1.80 | 6.0      | 4.5                | 3.7   |   |
| 33-043 |                 | ō                    | ō     | ō    | Ö | 98         |             | 1.308       |                             |       |                              |                            | 15.5                     |                   |      | 5.0      |                    | 3-7   |   |
| 43-058 |                 | ō                    | ō     | Ö    | 0 | 99         |             | 1.308       |                             |       |                              |                            | 24.7                     |                   |      | 6.0      | 4.3                | 3.7   |   |
| 58-074 | Ó               | 0                    | Ó     | 0    | 0 | 100        | 0           | 1.408       |                             |       |                              |                            | 21.8                     |                   |      | 14_0     | . 4.4              | 3.8   |   |
| 74-091 | 0               | ō                    | 0     | ò    | Q | 100        | 0           | 1.38        | 1.58                        | .046  | 33.7                         | 32.9                       | 19.3                     | .19               | 1.00 | 64.0     | 4.5                | 4.0   |   |
| 91-109 | ō               | 0                    | Ö     | ø    | 0 | 99         | 0           | 1.408       |                             |       |                              |                            | 17.9                     |                   |      | .51Ω     | 5Q.                | . 4.4 |   |
| 09-142 |                 | ō                    | ō     | ō    | 0 | 99         | 0           | 1.42        | 1.62                        | . 045 | 32.7                         | 30.1                       | 15.3                     | .21               | 0.80 | 29.0     | 5.8                | 5-2   |   |
| 42-165 |                 | ō                    | Ö     | ō    | 0 | 95         | 0           | 1.34        | 1.52                        | .043  | 36.1                         | 34-1                       | 13.7                     | .27               | 0.4C |          | 5.4                | 5.7   |   |
| 65-178 |                 | à                    | 0     | ò    | 0 | 89         | ō           |             |                             | -     |                              |                            | 11.2                     |                   |      | 15.5     | 6.6                | 5.4   |   |

| EPTH ( | ORGANI<br>6ALA | C MATTE | R ) | I RON<br>6C2A | PHOS<br>651A | (EX<br>6N2E | TRACTA<br>6020 | BLE BA | ASES 5B | 4A1         | ACTY<br>6Hla | AL<br>6G1D  | ECAT<br>SASA | EXCH) | RATIO<br>8D1 | RATIO<br>8D3 | CA<br>3F    | (BASE<br>5C3 | SAT) |
|--------|----------------|---------|-----|---------------|--------------|-------------|----------------|--------|---------|-------------|--------------|-------------|--------------|-------|--------------|--------------|-------------|--------------|------|
|        | ORGN<br>CARB   | NITG    |     | EXT           | TOTL         | CA          | MG             | NA     | K       | SUM<br>EXTB | BACL<br>TEA  | KCL<br>EXT. | EXT8<br>ACTY | NHAC  | NHAC         | CA<br>IO     | SAT<br>NHAC | EXTB         | NHAC |
| CM     | PCT            | PCT     |     | PCT           | PCT (        |             |                |        | MEQ     |             | G            |             |              | 1     | CLAY         | MG           | PCT         | PCT          | PCT  |
| 00-010 | 2.250          | .177    | 13  |               |              | 8.4         | 2.3            | 0.1    | 0.5     | 11.3        | 10.4         | 0.1         | 21.7         | 16.9  | 0, 82        | 3.7          | 30          | 52           | 67   |
| 10-03  | 0.46           | -060    | 8   |               |              | 2.0         | 1.4            | 0.2    | 0.3     | 3,9         | 15.5         | 7.2         | 19.4         | 15.7  | 0.59         | 1.4          | 13          | 20           | 25   |
| 33-043 | 0.38           | . 054   | 7   |               |              | 4.2         | 3.5            | 0.5    | 0.5     | 8.7         | 19.9         | 9.8         | 28.6         | 23,6  | . 0,64.      |              | 1.8_        | 30           | 37   |
| 43-056 | 0.47           | - 864   | 7   |               |              | 9.6         | 7.8            | 1.1    | 0.9     | 19.4        | 26.2         | 12.3        | 45.6         | 38.4  | 0.68         | 1.2          | 25          | 43           | 51   |
| 58-074 | 0.43           | - 049   | 9   |               |              | 12.0        | 8.5            | 1.3    | 0.8     | 22.6        | 20.0         | 7.4         | 42.6         | 34.4  | 0.70         | 3.4          | 35          | 53           | 66   |
| 74-091 | 0.23           |         |     |               |              | 12.4        | 8.3            | 1.5    | 0.8     | 23.0        | 13.0         | 3.2         | 36.0         | 30,4  | 0.75         | 1-5          | 41          | 64           | 76   |
| 91-109 | 0.15           |         |     |               |              | 14.5        | 8.5            | 1.7    | 0.8     | 25.5        | 9.3          | 1.0         | 34.8         | 28+2  | 0.79         | k.7          | 51          | 73           | 90   |
| 09-142 | 0.11           |         |     |               |              | 14.9        | 8.0            | 1.7    | 0.7     | 25.3        | 5.7          |             | 31.0         | 25.8  | 0.82         | 1.9          | 58          | 82           | 98   |
| 42-16: |                |         |     |               |              | 13.9        | 6.8            | 1.7    | 0.6     | 23.0        | 6.1          |             | 1 , 10       | 23.4. | 0.82         |              | 59          | 79           | 98   |
| 65-178 | 0.08           |         |     |               |              | 12.3        | 5.6            | 1.6    | 0.5     | 20.0        | 4.4          |             | 24.4         | 19.6  | 0.78         | 2.2          | 53          | 82           | 102  |

<sup>(</sup>A) FE/MN NODULES COMPRISE MORE THAN 75 PCT OF THE SAND (0-142 CM).

(B) BULK DENSITY ESTIMATED FOR HORIZONS FROM 0-10, 33-43, 43-58, 58-74, AND 99-109 CM.

(C) MICRO-PENETRATION RESISTANCE - A ROD 0.6 CM DIA IS SLOWLY PUSHED INTO BULK DENSITY CLOD, EQUILIBRATED AT 1/10~ BAR, A DISTANCE OF 0.6 CM USING A POCKET PENETROMETER. UNITS ARE FORCE (KG) AND NOT ESTIMATES OF UNCONFINED COMPRESSIVE STRENGTH.

(D) ORGANIC CARBON IS 7 KG PER SQ M IQ A DEPTH OF 1 METER (METHOD 6A).

(E) IOWA STATE UNIVERSITY DATA.

Pedon classification: Aeric Ochraqualf; fine, montmorillonitic, mesic.

Series classification: (Same as pedon) .

Soil: Rathbun silt loam.

Soil no.: S69-Iowa-4-4 (LSL Nos. 69L1021 - 69L1030).

Location: Appanoose County, Iowa, 200 feet south and 850 feet west of the northeast corner of the NW4 Sec. 21, T. 67 N., R. 18 W.

Vegetation and land use: Oak and hickory trees; woods.

Parent material: Wisconsin loess.

Physiography: Convex ridgetop extending in a southeast to east direction. Breaks rather sharply to D and E

slopes (9 to 18 percent) to the north and C slope (5 to 9 percent) to the south.

Relief: Gently sloping convex upland ridgetop.

Slope: 3 percent.

Drainage: Somewhat poorly drained.

Ground water: None observed.

Permeability: Very slow.

Described by: J. D. Highland, J. R. Culver, and T. E. Fenton; November 1969.

(Colors for moist conditions unless otherwise stated)

Al 69L1021 0 to 10 cm (0 to 4 inches). Very dark gray (10YR 3/1), dark grayish brown (10YR 4/2) crushed silt loam; light brownish gray (10YR 6/2) dry; weak thin platy structure; friable; strongly acid; abrupt smooth boundary.

A2 69L1022 10 to 33 cm (4 to 13 inches). Yellowish brown (10YR 5/4) silt loam, very pale brown (10YR 7/3) dry; weak to moderate thin platy structure; friable; few fine dark reddish brown (5YR 3/2) oxides; strongly acid; clear smooth boundary.

B1 69L1023 33 to 43 cm (13 to 17 inches). Yellowish brown (10YR 5/4) light silty clay; pale brown (10YR 6/3) coatings on peds; continuous light gray (10YR 7/1) coatings dry; strong very fine subangular and angular blocky structure; firm; strongly acid; abrupt smooth boundary.

B21t 69L1024 43 to 58 cm (17 to 23 inches). Brown (10YR 4/3) heavy silty clay; dark grayish brown (10YR 4/2) coatings on peds; few fine distinct grayish brown (2.5Y 5/2) mottles; moderate fine subangular blocky structure; very firm; thin continuous clay films; few very fine soft dark brown (7.5YR 3/2) oxides; strongly acid; gradual smooth boundary.

B22t 69L1025 58 to 74 cm (23 to 29 inches). Brown (10YR 4/3) medium silty clay; dark grayish brown (10YR 4/2) coatings on peds; few fine distinct grayish brown (2.5Y 5/2) mottles and few fine faint mottles of dark brown (10YR 3/3); weak coarse prismatic structure parting to moderate medium subangular blocky; very firm; thin continuous clay films; few very fine soft dark brown (7.5YR 3/2) oxides; medium acid; gradual smooth boundary.

B23t 69L1026 74 to 91 cm (29 to 36 inches). Mottled grayish brown (2.5Y 5/2) and brown (10YR 4/3) medium to light silty clay; few fine and medium faint mottles of dark brown (10YR 3/3 and 10 YR 3/4); weak coarse prismatic structure parting to weak to moderate medium subangular blocky; firm; few discontinuous clay films; few dusky red (2.5YR 3/2) oxides; very few patches of light gray (10YR 7/2) silt coats; medium acid; gradual boundary.

B31t 69L1027 91 to 109 cm (36 to 43 inches). Grayish brown (2.5Y 5/2) heavy silty clay loam to light silty clay;

prismatic structure parting to weak medium subangular blocky; firm; few thin discontinuous clay films and clay fills along root channels; few soft dark reddish brown (5YR 2/2) oxides; few dusky red (2.5YR 3/2) oxides; very few light gray (10YR 7/2) silt coats; medium acid; gradual boundary.

B32 69L1028 109 to 143 cm (43 to 56 inches). Mottled grayish brown (2.5Y 5/2), yellowish brown (10YR 5/4), and strong brown (7.5YR 5/6) silty clay loam; weak medium prismatic structure; firm; thin discontinuous light gray (10YR 7/1) silt coats on faces of prisms; common dark brown (7.5YR 3/2) oxide stains; few clay flows along root channels; Fe-Mn stains on vertical prism faces and along root channels; neutral; gradual boundary.

C1 69L1029 142 to 165 cm (56 to 65 inches). Mottled light brownish gray (2.5Y 6/2), yellowish brown (10YR 5/6),

|                                    |                    | میں۔ جرے ہ | FINE,                                 | MONTH                                 | OR ILLO      | ONITIC.     | MESIC      |              |                                 |             |               |        |              |                  | IL CON      | SERVAT                                            | TON SI  | ERVICE      | MRTSC      |  |
|------------------------------------|--------------------|------------|---------------------------------------|---------------------------------------|--------------|-------------|------------|--------------|---------------------------------|-------------|---------------|--------|--------------|------------------|-------------|---------------------------------------------------|---------|-------------|------------|--|
|                                    |                    |            |                                       |                                       |              |             |            |              |                                 |             |               |        |              |                  |             |                                                   |         |             |            |  |
|                                    | 2011 NO            |            | 20910                                 | WA-93-                                | -2(          | COUNTY      |            | WAYNE        |                                 |             |               |        |              |                  |             |                                                   |         |             |            |  |
|                                    | GENERAL            | METHODS-   | LAZA.                                 | 1618.1                                | BZ.18        |             | ere e e    | SAMP         | LE NOS.                         | - 69L11     | 031-69(       | 1040   |              |                  |             |                                                   |         | <del></del> |            |  |
|                                    |                    |            | <u>-</u>                              |                                       |              | *+====      |            |              |                                 |             |               |        |              |                  | <del></del> |                                                   |         |             |            |  |
|                                    | DEPTH              | HOR1 ZON   |                                       |                                       |              | ETME        | 1          |              | SAND -                          |             | 1             | 11     | -\$16 T-     | 1                | EAMI        | INTO                                              | EIME    | MON.        | 8 D1       |  |
|                                    |                    |            | SAND                                  | SILT                                  | CLAY         | CLAY        | AC O2      | CORS         | MEDS                            | FNES        | VFNS          | COSI   | FNSI         | VF \$ I          | TEXT        | 11                                                | CLAY    | C 03~       | 15-        |  |
| ** ***                             |                    |            | . 2-<br>•05                           | .002                                  | .002         | +0002       | 1          | 1            | -25                             | .10         | -05           | .02    | .002         | *005             | >ANU<br>21  | .02                                               | CLAY    | CLAY        | TO         |  |
|                                    | .CM                |            | l                                     |                                       |              |             |            | - <b>-</b> - | - PCT                           | LT 21       | 4H            |        |              |                  |             | ).                                                | PCT     | PCT         | CLAY       |  |
|                                    | 000-010            |            | 4.4A                                  | 74.9                                  | 20.7         | 10.4        | 4          | 1.4          | .9                              | 1.0         | . 7           | 29.3   | 45.6         |                  | 3.7         | 30-4                                              |         |             | 39         |  |
|                                    | 010-018<br>018-033 |            | 3.7A                                  | 74.8<br>70.8                          | 21.5         | 11.0        | - 3        | 1.3          | - A                             | _ 7         |               | 28.7   | 44.1         |                  | 3.1<br>2.7  | 29.6                                              | 51      |             | .41<br>.39 |  |
|                                    | 033-043            | 81         | 1.94                                  | 61.1                                  | 37.0         | 23.9        | .1         | -6           | - B<br>- 4<br>- 2<br>- 2<br>- 1 | . 4         | .4            | 22.0   | 39.1         |                  | 1.5         | 22.6                                              | 65      |             | .39        |  |
|                                    | 043-064<br>064-079 |            | 1.0A                                  | 46.7<br>51.9                          | 52.3<br>47.2 | 35.5        | -0         | .2           | .2                              | . 3         | .3            | 17.3   | 29.4<br>32.7 |                  | •7          | 17.7<br>19.7                                      | 68      |             | .45        |  |
|                                    | 079-091            | 823T       | .8A                                   | 56.5                                  | 42.7         |             |            |              |                                 |             | . 3           | 21.2   | 35.3         |                  | . 5         | 21.7                                              | 62      |             | 46         |  |
| ,                                  | 091-112<br>112-137 |            |                                       | 61.1<br>64.9                          |              |             | .0<br>.1   | •1<br>•2     |                                 |             | <b>4</b> 9    | . 24.6 | - 40±1       |                  | كالمعالم    | 24-1<br>25-3                                      | 58      |             | .47<br>.48 |  |
|                                    | 137-160            | 833T       | 3.0A                                  | 66.3                                  | 30.7         |             | TR.        | - 4          |                                 |             | .7            | 22.9   | 43.4         |                  | 2.3         | 24.3                                              |         |             | .46        |  |
|                                    |                    |            |                                       |                                       |              |             |            |              |                                 |             |               |        |              |                  |             |                                                   | ······· |             |            |  |
|                                    | DEPTH              | (PARTICLE  | SIZE ANA                              | LYSIS,                                | MM, 3        | 88, 381     | . 3BZ )    | ( BUL        | K DENS                          | ITY )       | ) ( - ' - ' - | -WATE  | R CON        | TENT-            | 1           | CARBO                                             | NATE    | (P          | H)         |  |
|                                    |                    | VOL. I-    | 75-20                                 | 20-5                                  | GHT -        | LT          | 20-2       | 4A1D<br>1/3- | DVEN                            | 4D1<br>COLE | 481C          | 481C   | 482<br>15-   | 4€1<br>WRD       |             | 6E1B<br>LT                                        | 3ALA.   | 8C1A        | 1/2        |  |
|                                    |                    | .2 ()      |                                       |                                       | mm 2 1.2     | .0/4        | rci        | DAK          | . UK T                          |             | DAK.          | DAK.   | DAK          |                  |             | · <del>-                                   </del> |         |             | CACL       |  |
|                                    | CM                 | PCT PCT    | , ,                                   | PCI L                                 | . 15 -       | - <b></b> , | L120       | 6/66         | 6/66                            |             | PLI           | PCI    | PCI          | CM               |             | PCT                                               | PC1     |             |            |  |
|                                    |                    |            |                                       | ;                                     |              |             |            |              |                                 |             |               |        |              |                  |             |                                                   |         |             |            |  |
| ]=                                 |                    |            |                                       | •                                     |              | F 1         |            |              |                                 |             |               |        |              |                  |             |                                                   |         |             |            |  |
|                                    |                    |            |                                       |                                       |              |             |            |              |                                 |             |               |        |              |                  |             |                                                   |         |             |            |  |
| 5-1                                |                    |            |                                       |                                       |              |             |            |              |                                 |             |               |        |              |                  |             |                                                   |         |             |            |  |
| -                                  |                    |            |                                       |                                       |              |             |            |              |                                 |             |               |        |              |                  |             |                                                   |         |             |            |  |
|                                    |                    |            |                                       |                                       |              |             |            |              |                                 |             |               |        |              |                  |             |                                                   |         |             |            |  |
|                                    |                    |            |                                       |                                       |              |             |            |              | _                               | 11          |               | Σ/I= - | <del></del>  | TF,              |             |                                                   | 4       | <u> </u>    |            |  |
| ,                                  | ì                  |            |                                       |                                       |              |             |            |              | i                               |             |               | Ш      |              |                  |             |                                                   |         |             |            |  |
| ·                                  |                    |            |                                       |                                       |              |             |            |              |                                 |             |               |        |              |                  |             |                                                   |         |             |            |  |
|                                    |                    |            |                                       |                                       |              |             | ,          |              |                                 |             |               |        |              | <u> </u>         | Z+          |                                                   |         |             |            |  |
|                                    |                    |            |                                       |                                       |              |             |            |              |                                 |             |               |        |              | r <sub>r</sub> - | Z1          |                                                   |         |             |            |  |
|                                    |                    |            |                                       |                                       |              | ,           | · <u> </u> |              |                                 |             |               |        |              | <i>r</i>         | Zī          |                                                   |         |             |            |  |
|                                    |                    |            |                                       |                                       |              |             | ·          |              |                                 |             |               |        |              | F. 6-            | <b>(</b> †  |                                                   |         |             |            |  |
| *                                  | L. m. leve         | -3         |                                       |                                       |              |             |            |              |                                 |             |               |        |              | F/A-             | i,          |                                                   |         |             |            |  |
|                                    | F : (max           |            |                                       |                                       |              | <u></u>     |            |              |                                 |             |               |        |              | <i>Tra-</i>      | <i>t</i> 1  |                                                   |         |             |            |  |
| '                                  | I                  | -1         |                                       |                                       |              | <u></u>     | ·          |              |                                 |             |               |        |              | <i>Tra-</i>      | <i>t</i> 1  |                                                   |         |             |            |  |
| 1                                  | 1: ;               |            |                                       |                                       |              | <u> </u>    |            |              |                                 |             |               |        |              | Fra-             | it          |                                                   |         |             |            |  |
|                                    | P                  |            |                                       |                                       |              |             |            |              |                                 |             |               |        |              | Fra-             | <i>t</i> τ  |                                                   |         |             |            |  |
| 12                                 | r                  |            |                                       |                                       |              |             |            |              |                                 |             |               |        |              | Fr-              | <i>t</i> 7  |                                                   |         |             |            |  |
| ·· · · · · · · · · · · · · · · · · | <i>γ</i>           |            |                                       |                                       |              |             |            |              |                                 |             |               |        |              | Fra-             |             |                                                   |         |             |            |  |
|                                    |                    | <u>.</u>   |                                       |                                       |              |             |            |              |                                 |             |               |        |              | Fra              | <i>t</i> 1  |                                                   |         |             |            |  |
| ·                                  |                    | 1          |                                       |                                       |              |             |            |              |                                 |             |               |        |              | Fra              |             |                                                   |         |             | -          |  |
| /-<br>*-                           |                    | 1.         |                                       |                                       |              |             |            |              |                                 |             |               |        |              | Free             | <u></u>     |                                                   |         |             |            |  |
|                                    |                    | 1.         |                                       |                                       |              |             |            |              |                                 |             |               |        |              | Free             | <i>ξ</i> τ  |                                                   |         |             |            |  |
|                                    |                    |            |                                       |                                       |              |             |            |              |                                 |             |               |        |              | Free             | <i>ξ</i> τ  |                                                   |         |             |            |  |
| ·                                  |                    |            |                                       |                                       |              |             |            |              |                                 |             |               |        |              | Free             | <i>Ι</i> τ  |                                                   |         |             |            |  |
| p c                                |                    |            |                                       |                                       |              |             |            |              |                                 |             |               |        |              | Free             | <i>Ι</i> τ  |                                                   |         |             |            |  |
| þ                                  |                    |            |                                       | · · · · · · · · · · · · · · · · · · · |              | <b></b>     |            |              |                                 |             |               |        |              |                  | <i>Ι</i> τ  |                                                   |         |             |            |  |
| þ. e                               | [: a, a,           |            |                                       | · · · · · · · · · · · · · · · · · · · |              |             | , F        |              |                                 |             |               |        |              |                  |             |                                                   |         |             |            |  |
|                                    |                    |            |                                       |                                       |              |             |            |              |                                 |             |               |        |              |                  |             |                                                   |         |             |            |  |
| t e                                |                    | <u>.</u>   |                                       | <u> </u>                              |              |             |            |              |                                 |             |               |        |              | Fre-             |             |                                                   |         |             |            |  |
| ja e                               |                    |            |                                       | · F. 7                                |              |             |            |              |                                 |             |               |        |              |                  |             |                                                   |         |             |            |  |
| * a                                |                    |            |                                       | - T                                   |              |             | . F.:      |              |                                 |             |               |        |              |                  |             |                                                   |         |             |            |  |
|                                    |                    |            | · · · · · · · · · · · · · · · · · · · |                                       |              |             |            |              |                                 |             |               |        |              |                  |             |                                                   |         |             |            |  |
|                                    |                    |            |                                       |                                       |              |             | . 5        |              |                                 |             |               |        |              |                  |             |                                                   |         |             |            |  |
|                                    |                    |            |                                       | · · · · · · · · · · · · · · · · · · · |              |             |            |              |                                 |             |               |        |              |                  |             |                                                   |         |             |            |  |
| p. 2                               |                    |            |                                       | - <del> </del>                        |              |             |            |              |                                 |             |               |        |              |                  |             |                                                   |         |             |            |  |

Pedon classification: Aeric Ochraqualf; fine, montmorillonitic, mesic.

Series classification: (Same as pedon) .

Soil: Rathbun silt loam.

Soil no.: \$69-Iowa-93-2 (LSL Nos. 69L1031 - 69L1040) .

Location: Wayne County, Lowa, 680 feet south and 540 feet west of the northeast corner of the SW% Sec. 19,

T. 67 N., R. 21 W.

Vegetation and land use: Large, deciduous trees; woods.

Parent material: Oxidized-leached and deoxidized-leached loss low in sand (less than 5 percent) (Wisconsin). Physiography: Convex ridgetop adjoining a nearly level, narrow, stable divide in the losss-covered Kansan

and Nebraskan till plain.

Relief: Gently sloping convex summit of narrow ridgetop or interfluve.

Slope: 3 percent north-facing.

Drainage: Somewhat poorly drained.

Ground water: None observed.

Permeability: Very slow.

Described by: J. D. Highland, J. R. Culver, T. E. Fenton; November 5, 1969.

(Colors for moist conditions unless otherwise stated)

Al 69L1031 0 to 10 cm (0 to 4 inches). Very dark gray (10YR 3/1) silt loam; light gray (10YR 6/1) dry; kneaded very dark grayish brown (10YR 3/2); moderate thin and very thin platy structure; friable; thin patchy light gray (10YR 7/1 dry) silt coatings; few fine brown (7.5YR 4/4) oxides; medium acid; abrupt smooth boundary.

A21 69L1032 10 to 18 cm (4 to 7 inches). Brown (10YR 5/3) silt loam, pale brown (10YR 6/3) dry; kneaded same as matrix; moderate thin platy structure; friable; few dark grayish brown (10YR 4/2) patches; thin discontinuous light gray (10YR 7/2 dry) silt coatings; few fine dark reddish brown (5YR 3/2) oxides; very strongly acid; clear smooth boundary.

A22 69L1033 18 to 33 cm (7 to 13 inches). Yellowish brown (10YR 5/4) silt loam, pale brown (10YR 6/3) dry; kneaded same as matrix; weak coarse platy structure parting to weak medium and fine subangular blocky; friable; thin discontinuous light grav (10YR 7/2 drv) silt coatings: few fine dark reddish brown (5YR 3/2) oxides; very

strongly acid; clear smooth boundary.

B1 69L1034 33 to 43 cm (13 to 17 inches). Yellowish brown (10YR 5/4) light silty clay; brown (10YR 5/3) coatings on peds; kneaded yellowish brown (10YR 5/4); strong fine and very fine angular blocky and subangular blocky structure; firm; thin nearly continuous light gray (10YR 7/1 dry) silt coatings; few fine dark reddish brown (5YR 3/2) oxides; very strongly acid; abrupt smooth boundary.

B21t 69L1035 43 to 64 cm (17 to 25 inches). Dark grayish brown (10YR 4/2) medium to heavy silty clay; few fine faint dark yellowish brown (10YR 4/4) mottles; kneaded grayish brown (10YR 5/2) to brown (10YR 5/3); moderate very fine subangular blocky structure; very firm; few fine dark brown (7.5YR 3/2) oxides; thick continuous clay films; very strongly acid; clear smooth boundary.

B22t 69L1036 64 to 79 cm (25 to 31 inches). Dark gravish brown (10YR 4/2) medium silty clay: common fine faint



SON Series not designated (sampled as Seymour) Nos. 862 Towa-93-1 LOCATION Wayne County, Iowa

SOIL SURVEY LABORATORY Lincoln, Nebraska LAB. Nos. 17997-18010 February 1967

8:74

77-90 0.61

8:83 8:好

0.42

0.01

| neral                                                                                            | Methods:                                                                                                                   | 1A. :                                                                       | lBlb, a                                                                                 | 2Al. 2       | В                 |                   |               |                      |                                                          |                                                           |                                      |                       |                  |                   |             | ry 190   | ••                                                |                    |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------|-------------------|-------------------|---------------|----------------------|----------------------------------------------------------|-----------------------------------------------------------|--------------------------------------|-----------------------|------------------|-------------------|-------------|----------|---------------------------------------------------|--------------------|
|                                                                                                  |                                                                                                                            |                                                                             | ,                                                                                       | ,            | -                 |                   |               | Size                 | class and                                                | particle dia                                              | metar (mm                            | 3.A                   | <u> </u>         |                   |             |          |                                                   |                    |
|                                                                                                  |                                                                                                                            |                                                                             | Total                                                                                   |              |                   |                   | Şand          |                      |                                                          | Si                                                        | lt                                   |                       |                  |                   |             | Coa      | rse fragme                                        | nts 2              |
| Depth                                                                                            | Horizon                                                                                                                    | Sand                                                                        | Silt                                                                                    | Clay         | Very              | Coarse            | Medium        | Fine                 | Very fine                                                |                                                           | Int III                              | Int. II<br>(0 2–0.02) | (2-0 1)          |                   |             | > 2      | 2 - 19                                            | 19 -7              |
| (ln.)                                                                                            |                                                                                                                            | (2-0 05)                                                                    | (0 05-<br>0 002)                                                                        | ( < 0 002)   | toarse<br>(2-1)   | (1-0.5)           | (0.5–0 25)    | (0 25-0.1)           | (0.1-0 05)                                               | 0 05-0.02                                                 | (0 02-                               | ľ                     | ,,               |                   |             |          | Pct                                               | 1                  |
|                                                                                                  |                                                                                                                            | -                                                                           |                                                                                         |              |                   |                   | Pct. of <     |                      | _                                                        | 1                                                         |                                      |                       |                  |                   |             | Pct      | -< 76                                             |                    |
| Q-6                                                                                              | Alp<br>AlA2(?)                                                                                                             | 3.3a                                                                        | 71.0<br>68.9                                                                            | 25.7         | 0.3               | 0.8               | 0.7           | 0.7                  | 0.8                                                      | 32.9<br>30.5                                              | 38.1<br>38.4                         | 34.0<br>31.4          | 2.5              |                   |             | -        |                                                   |                    |
| 6-9<br>9-13                                                                                      | ALAZ(?)                                                                                                                    | 3.2a<br>4.1b                                                                | 65.8                                                                                    | 27.9<br>30.1 | 0.3               | 1.0               | 0.7           | 0.5                  | 0.7<br>0.7                                               | 27.4                                                      | 38.4                                 | 28.4                  | 3.4              |                   |             | -        |                                                   |                    |
| 13-17                                                                                            | B1                                                                                                                         | 4.2b                                                                        | 61.2                                                                                    | 34.6         | 0.9               | 1.2               | 0.6           | 0.7                  | 0.8                                                      | 23.8                                                      | 37.4                                 | 25.0                  | 3.4              |                   |             |          |                                                   |                    |
| 17-22                                                                                            | B21                                                                                                                        | 1.3b                                                                        | 45.3                                                                                    | 53.4         | tr                | 0.2               | 0.2           | 0.3                  | 0.6                                                      | 17.1                                                      | 28.2                                 | 17.9                  | 0.7              |                   |             | -        |                                                   |                    |
| 22-29                                                                                            | B22                                                                                                                        | 1.8b                                                                        | 49.1                                                                                    | 49.1         | tr                | 0.3               | 0.3           | 0.5                  | 0.7                                                      | 19.2                                                      | 29.9                                 | 20.2                  | 1.1              |                   | ļ           | -        |                                                   |                    |
| 29-35                                                                                            | B23                                                                                                                        | 2.3b                                                                        | 52.9                                                                                    | 44.8         | 0.2               | 0.6               | 0.3           | 0.5                  | 0.7                                                      | 21.2                                                      | 31.7                                 | 22.2                  | 1.6              |                   |             | -        |                                                   |                    |
| 35-39<br>39-45                                                                                   | B31<br>B32                                                                                                                 | 0.9b<br>0.7ь                                                                | 58.6<br>60.0                                                                            | 40.5<br>39.3 | 0.1<br>tr         | o.2<br>tr         | 0.1<br>tr     | 0.1                  | 0.4                                                      | 22.8<br>23.8                                              | 35.8<br>36.2                         | 23.3                  | 0.5<br>0.1       |                   |             | _        |                                                   |                    |
| 45-50                                                                                            | CI                                                                                                                         | 0.7a                                                                        | 61.0                                                                                    | 38.3         | tr                | 0.1               | 0.1           | 0.1                  | 0.4                                                      | 23.5                                                      | 37.5                                 | 24.0                  | 0.3              |                   |             | -        | <u> </u>                                          |                    |
| 56-60<br>-70                                                                                     | 83                                                                                                                         | 8.6a<br>8.6a                                                                | <b>63.8</b>                                                                             | 35.6<br>34.6 | -                 | 0.1               | 8:1           | 8: <del>1</del>      | 0.3<br>0.4                                               | 献:                                                        | 38.9<br>40.8                         | 25.3<br>24.5          | 0.3              |                   |             | _        |                                                   |                    |
|                                                                                                  | IIAlb                                                                                                                      | 2.2                                                                         | 60.8                                                                                    |              | tr                | 0.2               | 0.3           | 0.1                  | 1.0                                                      | 20.7                                                      | 40.5                                 | 24.5                  | 1.2              |                   |             | -        |                                                   | -                  |
| 70-77<br>77-90                                                                                   | IIA12b                                                                                                                     | 3.6                                                                         | 55.1                                                                                    | 37.0<br>41.3 | 0.1               | 0.3               | 0.6           | 1.1                  | 1.5                                                      | 21.3                                                      | 33.8                                 | 23.4                  | 2.1              | '                 |             | 🗓        |                                                   |                    |
|                                                                                                  | 6Ala                                                                                                                       | 6Bla                                                                        |                                                                                         | <u> </u>     | 6E2a              | 602a              |               | Bulk densit          |                                                          | 4m.                                                       |                                      | ter conter            |                  |                   |             |          | Į p                                               | H                  |
|                                                                                                  |                                                                                                                            | 1                                                                           | C/N                                                                                     |              | _                 | Ext.              | 4Ala          | I+A1d                | 4A1b                                                     |                                                           | 14 <b>13</b> 14                      | 4Blc                  | 432              | 4C1               |             |          |                                                   | 9CJ                |
| Depth<br>(In.)                                                                                   | Organic                                                                                                                    | Nitrogen                                                                    | C/N                                                                                     |              | Carbon-<br>ate as | Iron              | Field-        | 1/3-                 | Air-                                                     | COLE                                                      | Field-                               | 1/3-                  | 15-              | 1/3-              |             |          |                                                   | (1                 |
| 1                                                                                                | VIII 50.17                                                                                                                 |                                                                             |                                                                                         |              | CaCO 3            | 9.8               | State         | Bar                  | Dry                                                      |                                                           | State                                | Par                   | Bar              | minus             |             |          |                                                   |                    |
|                                                                                                  | Pet.                                                                                                                       | n                                                                           |                                                                                         |              | 0-4               | Fe                | 5/on          | g/cc                 | g/cc                                                     |                                                           | Pct,                                 | Pct.                  | Pct              | 15-Bar<br>in./in. |             |          |                                                   | H <sub>C</sub> (   |
| 0-6                                                                                              | 2.41                                                                                                                       | 0.196                                                                       | 12                                                                                      |              | Pct               | 1.0               | g/cc<br>1.38  | 1.41                 | 1.50                                                     | 0.02                                                      | 30.0                                 | 26.5                  | 11.2             | 0.22              | <u> </u>    |          | <del>                                      </del> | 5.                 |
| 6-9                                                                                              | 1.46                                                                                                                       | 0.138                                                                       | îī                                                                                      |              |                   | 1.0               | 1.32          | 1.32                 | 1.40                                                     | 0.02                                                      | 28.3                                 | 26.0                  | 11.4             | 0.19              |             |          |                                                   | 5.                 |
| 9-13                                                                                             | 0.98                                                                                                                       | 0.090                                                                       | 11                                                                                      |              |                   | 1.4               | 1.32          | 1.32<br>1.36         | 1.40                                                     | 0.02                                                      | 26.9                                 | 24.6                  | 12.2             | 0.16              |             |          |                                                   | 5.<br>5.           |
| 13-17                                                                                            |                                                                                                                            | 0.078                                                                       | 10                                                                                      |              |                   | 2.0               |               | 1.28                 | 1.45<br>1.69d                                            | 0.02                                                      | 25.0<br>32.2                         | 24.3<br>31.2          | 15.1<br>22.9     | 0.12              |             |          |                                                   | 5.                 |
| 17-22<br>22-29                                                                                   | 0.73                                                                                                                       | 0.072                                                                       | 10<br>8                                                                                 |              |                   | 1.5               | 1.32<br>1.34  | 1.30                 | 1.84                                                     | 0.11                                                      | 31.8                                 | 31.8                  | 21.4             | 0.14              |             |          |                                                   | 5.                 |
| <u>29-35</u>                                                                                     | 0.28                                                                                                                       | 0,072                                                                       | Ŭ                                                                                       |              |                   | 1.3               | 1.40          | 1.36                 | 1.84                                                     | 0.10                                                      | 28.8                                 | 29.5                  | 19.9             | 0.13              |             | 1        | <del>                                     </del>  | 5.                 |
| 35-39                                                                                            | 0.20                                                                                                                       |                                                                             |                                                                                         |              |                   | 0.7               | 1.46          | 1.35                 | 1.84                                                     | 0.10                                                      | 26.6                                 | 31.0                  | 18.8             | 0.16              |             |          |                                                   | 6.                 |
| 39-45<br>45-50                                                                                   | 0.19                                                                                                                       |                                                                             |                                                                                         |              | -(s)<br>-(s)      | 7.0               | 1.48          | 1.36                 | 1.80                                                     | 0.09                                                      | 26.0                                 | <del>29:8</del>       | 18.7<br>18.6     | 0.15<br>0.15      |             |          | <u> </u>                                          | 6.                 |
| 45-50<br>50-60                                                                                   | 0.16                                                                                                                       |                                                                             |                                                                                         |              | -(s)              | 0.8               | 1.50          | 1.37                 | 1.79<br>1.76                                             | 0.07                                                      | 22.6                                 | 29.1                  | 17.0             | 0.17              |             |          |                                                   | 6.                 |
| 60-70                                                                                            | 0.12                                                                                                                       |                                                                             |                                                                                         |              |                   | 0.6               | 1.,0          |                      | _,,,                                                     | ****                                                      |                                      |                       | 16.2             |                   |             |          | l                                                 | 6.                 |
| 70-77                                                                                            | 0.19                                                                                                                       |                                                                             |                                                                                         |              |                   | 0.4               |               |                      |                                                          |                                                           |                                      |                       | 16.7             |                   | T —         |          | T                                                 | ō.                 |
| <u>77-90</u>                                                                                     | 80.0                                                                                                                       |                                                                             |                                                                                         |              |                   | 0.5               |               |                      |                                                          |                                                           | <u></u> _                            |                       | 17.4             |                   | <br>' === ' | <u> </u> | <u> </u>                                          | 6.                 |
|                                                                                                  | <u> </u>                                                                                                                   | Extractab                                                                   | -                                                                                       | 533a         | 1                 | 6Hla              |               | ch.Cap.              | an<br>Maria and and and and                              | <u>.</u>                                                  | ABLA                                 | 6Pla                  | 502              | 8 <u>B</u>        | .818        |          | 503                                               | 50                 |
| Depth                                                                                            | 6N2a                                                                                                                       | 602a                                                                        | 6P2a                                                                                    | 6 <b>92a</b> |                   | Exct.<br>Accidity | 5A3a.<br>50am | 5Ala<br>NHLOA        | ļ                                                        | Resist                                                    | Elec.<br>Cond.                       | Sol.<br>Na            | Exch.<br>Na      | Water<br>  at     | Ja/Mg       |          | Sum                                               | ATH <sup>T</sup> C |
| (In.)                                                                                            | Ca                                                                                                                         | Mg                                                                          | Na                                                                                      | к            | Sum               | MILLION IN        | Cations       | 'ATTAL COM           | Ī                                                        | ivity                                                     | wiia.                                | 14cx                  | 1404             | Sat.              | ,           |          | Cations                                           | -4                 |
|                                                                                                  |                                                                                                                            |                                                                             |                                                                                         |              |                   |                   | · · · · ·     |                      |                                                          |                                                           | J                                    | /1                    | Do-t             | Dot               |             |          | l                                                 | ۱.,                |
| 0.7                                                                                              | 36.7                                                                                                                       |                                                                             | 10.1                                                                                    | 10.3         | meg/100 g         | 12.7              | 29.1          | 20.0                 |                                                          | obms                                                      | nmhos <u>.</u>                       | me./1.                | ret.             | Pet.              | 3.8         | ,        | Post.,                                            | PS                 |
| 0-6<br>6-9                                                                                       | 12.7                                                                                                                       | 3.3                                                                         | 0.1                                                                                     | 0.3          | 15.4              | 11.3              | 26.5          | 19.0                 |                                                          |                                                           |                                      |                       |                  |                   | 2.6         |          | 57                                                | 80                 |
| 9-13                                                                                             | 10.8                                                                                                                       | 4.9                                                                         | 0.2                                                                                     | 0.3          | 16.2              | 10.1              | 26.3          | 19.8                 |                                                          |                                                           |                                      |                       |                  |                   | 2.2         | ١ _      | 62                                                | 82                 |
| 13-17                                                                                            | 12.5                                                                                                                       | 6.4                                                                         | 0.4                                                                                     | 0.4          | 19.7              | 10.6              | 30.3          | 22.9<br>36.6         |                                                          |                                                           |                                      |                       |                  |                   | 2.0         |          | 65                                                | 86                 |
| 17-22                                                                                            | 21.1                                                                                                                       | 11.4                                                                        | 0.9                                                                                     | 0.8          | 34.2              | 11.6              | 45.8          | 36.6                 |                                                          |                                                           |                                      |                       |                  |                   | 1.9         |          | 75<br>79                                          | 100                |
| 55-50                                                                                            | 20.4                                                                                                                       | 11.1                                                                        | 1.1                                                                                     | 0.9          | 33.5              | 8.7               | 40.4          | 33.5                 |                                                          |                                                           |                                      |                       |                  |                   | 1.8         |          |                                                   | 100                |
| 29-35<br>35-39                                                                                   | 20.1<br>19.1                                                                                                               | 10.3                                                                        | 1.2                                                                                     | 0.8          | 33.1<br>31.3      | 7.3<br>4.3        | 35.6          | 31.2<br>28.7         |                                                          |                                                           |                                      |                       |                  |                   | 1.9         |          | 82<br>88                                          | 109                |
| 39-45                                                                                            | 19.3                                                                                                                       | 10.5                                                                        | 1.2                                                                                     | 0.7          | 31.7              | 4.0               | 35.7          | 28.6                 |                                                          | 2200                                                      | 0.40                                 | 2.7                   | 3.7              | 58.0              | 1,8         |          | 89                                                | 77.                |
| 45-50                                                                                            | 18.8                                                                                                                       | 10.1                                                                        | 1.1                                                                                     | 0.7          | 30.7              | 3.8               | 34.5          | 28.0                 |                                                          |                                                           |                                      |                       |                  |                   | 1.9         |          | 89                                                | ונו<br>טנו         |
| 50-60<br>60-70                                                                                   | 17:5                                                                                                                       | 9.3<br>8.9                                                                  | 1.1                                                                                     | 0.6          | 28.5<br>27.6      | 3.4<br>3.1        | 31.9<br>30.7  | 26.3                 |                                                          |                                                           |                                      |                       |                  |                   | 1.9         |          | 96                                                | 100                |
|                                                                                                  |                                                                                                                            | 2.2                                                                         | 1.0                                                                                     | 0.4          | 25.7              | 4.6               | 30.3          | 26.3<br>25.5<br>24.4 |                                                          |                                                           |                                      |                       |                  |                   | 2,0         |          | 89<br> 90 _<br> 85<br> 85                         | 10                 |
| 70-77                                                                                            |                                                                                                                            | 8.1                                                                         |                                                                                         |              |                   |                   |               | 05 3                 |                                                          |                                                           | 1                                    |                       |                  |                   | 1.9         | J        | 85                                                | 10                 |
| 70-77<br><del>77-90</del>                                                                        | 16.2<br>16.4                                                                                                               | 8.1<br>8.6                                                                  |                                                                                         | 0.5          | 25.7<br>26.5      | 4.6               | 31.1          | 25.3                 |                                                          | <u> </u>                                                  | <u> </u>                             |                       |                  |                   | *****       |          |                                                   |                    |
|                                                                                                  | 16.2<br>16.4                                                                                                               |                                                                             |                                                                                         | 0.5          | 26.5              | 4. <u>6</u><br>   | 31.1<br>      |                      |                                                          |                                                           | <u></u>                              |                       |                  |                   | \           | C 05 -   |                                                   |                    |
| <del>77-90</del>                                                                                 | 16.2<br>16.4<br>Patios 1                                                                                                   | o Clay                                                                      | / 81011                                                                                 |              | 26.5              | 4.6               | 31.1          | a.                   | Fe-Ma:                                                   | nodule                                                    | s: >:                                | 50 per                | cent (           | 2-0.1             | mm);        | 5-25 ]   | percent                                           | ;                  |
| 77-90<br>Depth                                                                                   | 16.2<br>16.4<br>Patios 1                                                                                                   | Ext.                                                                        | / 8101<br>15-1841                                                                       |              | 26.5              | 4.6               | 31.1          | a.                   | Fe-Ma:                                                   | .05 mm                                                    | ).                                   |                       |                  |                   |             |          |                                                   |                    |
| <del>77-90</del>                                                                                 | 16.2<br>16.4<br>Patios 1                                                                                                   | o Clay                                                                      | / 81011                                                                                 |              | 26.5              | 4.6 <u>_</u>      | 31.1          | a.<br>b.             | Fe-Mn:<br>(0.1-0<br>Fe-Mn:<br>(0.1-0                     | .05 mm<br>nođule<br>.05 mm                                | ).<br>s: >:<br>}.                    | 50 p <b>er</b>        | cent (           | 2-0.1             |             |          | percent<br>percen                                 |                    |
| 77-90<br>Depth                                                                                   | 16.2<br>16.4<br>Patios 1                                                                                                   | Ext.<br>Iron                                                                | 8D1<br>15-Bar<br>Water                                                                  |              | 26.5              | 4.0               | 31.1          | a.<br>b.             | Fe-Mn:<br>(0.1-0<br>Fe-Mn:<br>(0.1-0                     | .05 mm.<br>nođule<br>.05 mm<br>m2 t.o                     | ).<br>s: >:<br>).<br>60 inc          | 50 per<br>hes (M      | cent (<br>lethod | 2-0.1<br>6A).     | mm);        |          |                                                   |                    |
| 77-90<br>Dapth<br>(In )                                                                          | Hatios 1                                                                                                                   | Ext.<br>Iron                                                                | 15-Bar<br>Water                                                                         |              | 26.5              | 4.6               | 31.1          | a.<br>b.<br>c.<br>d. | Fe-Mn:<br>(0.1-0<br>Fe-Mn:<br>(0.1-0<br>13 kg/:<br>Range | .05 mm<br>nodule<br>.05 mm<br>m <sup>2</sup> to<br>in dup | ).<br>s: ><br>).<br>60 inc<br>licate | 50 per<br>hes (M      | cent (<br>lethod | 2-0.1<br>6A).     | mm);        |          |                                                   |                    |
| Depth (In )  0-6 6-9                                                                             | 16.2<br>16.4<br>Ratios 1<br>WHit OAC<br>CEC                                                                                | Ext.<br>Iron<br>0.039                                                       | 8D1<br>15-Bar<br>Water<br>0.44<br>0.41                                                  |              | 26.5              | 4.6               | 31.1          | a.<br>b.<br>c.<br>d. | Fe-Mn:<br>(0.1-0<br>Fe-Mn:<br>(0.1-0                     | .05 mm<br>nodule<br>.05 mm<br>m <sup>2</sup> to<br>in dup | ).<br>s: ><br>).<br>60 inc<br>licate | 50 per<br>hes (M      | cent (<br>lethod | 2-0.1<br>6A).     | mm);        |          |                                                   |                    |
| 77-90 Depth (In ) 0-6 6-9 9-13                                                                   | 16.2<br>16.4<br>Ratios 1<br>WH, OAC<br>CEC<br>0.78<br>0.68<br>0.66                                                         | Ext.<br>Iron<br>0.039<br>0.036<br>0.047                                     | 8D1<br>15-Bar<br>Water<br>0.44<br>0.41                                                  |              | 26.5              | 4.6               | 31.1          | a.<br>b.<br>c.<br>d. | Fe-Mn:<br>(0.1-0<br>Fe-Mn:<br>(0.1-0<br>13 kg/:<br>Range | .05 mm<br>nodule<br>.05 mm<br>m <sup>2</sup> to<br>in dup | ).<br>s: ><br>).<br>60 inc<br>licate | 50 per<br>hes (M      | cent (<br>lethod | 2-0.1<br>6A).     | mm);        |          |                                                   |                    |
| 77-90 Depth (In ) 0-6 6-9 9-13 13-17                                                             | 16.2<br>16.4<br>Ratios t<br>Weig OAC<br>CEC<br>0.78<br>0.66<br>0.66                                                        | Ext.<br>Iron<br>0.039<br>0.036<br>0.047                                     | 8D1<br>15-Bar<br>Water<br>0.44<br>0.41<br>0.41                                          |              | 26.5              | 4.6               | 31.1          | a.<br>b.<br>c.<br>d. | Fe-Mn:<br>(0.1-0<br>Fe-Mn:<br>(0.1-0<br>13 kg/:<br>Range | .05 mm<br>nodule<br>.05 mm<br>m <sup>2</sup> to<br>in dup | ).<br>s: ><br>).<br>60 inc<br>licate | 50 per<br>hes (M      | cent (<br>lethod | 2-0.1<br>6A).     | mm);        |          |                                                   |                    |
| 77-90<br>Depth<br>(In )<br>0-6<br>6-9<br>9-13<br>13-17<br>17-22                                  | 16.2<br>16.4<br>Ratios 1<br>WH, OAC<br>CEC<br>0.78<br>0.68<br>0.66<br>0.66<br>0.69                                         | Ext.<br>Iron<br>0.039<br>0.036<br>0.047<br>0.056<br>0.026                   | 8D1<br>15-Bar<br>Water<br>0.44<br>0.41                                                  |              | 26.5              | 4.0               | 31.1          | a.<br>b.<br>c.<br>d. | Fe-Mn:<br>(0.1-0<br>Fe-Mn:<br>(0.1-0<br>13 kg/:<br>Range | .05 mm<br>nodule<br>.05 mm<br>m <sup>2</sup> to<br>in dup | ).<br>s: ><br>).<br>60 inc<br>licate | 50 per<br>hes (M      | cent (<br>lethod | 2-0.1<br>6A).     | mm);        |          |                                                   |                    |
| 77-90<br>Depth<br>(In)<br>0-6<br>6-9<br>9-13<br>13-17<br>17-22<br>22-29                          | 16.2<br>16.4<br>Patios 1<br>WHi OAC<br>CEC<br>0.78<br>0.68<br>0.66<br>0.66<br>0.69<br>0.68                                 | Ext.<br>Tron<br>0.039<br>0.036<br>0.047<br>0.056<br>0.026                   | 8D1<br>15-Bar<br>Water<br>0.44<br>0.41<br>0.44<br>0.43<br>0.44                          |              | 26.5              | 4.6               | 31.1          | a.<br>b.<br>c.<br>d. | Fe-Mn:<br>(0.1-0<br>Fe-Mn:<br>(0.1-0<br>13 kg/:<br>Range | .05 mm<br>nodule<br>.05 mm<br>m <sup>2</sup> to<br>in dup | ).<br>s: ><br>).<br>60 inc<br>licate | 50 per<br>hes (M      | cent (<br>lethod | 2-0.1<br>6A).     | mm);        |          |                                                   |                    |
| 77-90 Depth (In ) 0-6 6-9 9-13 13-17 17-22 22-29 35-39                                           | 16.2<br>16.4<br>Fattos 1<br>WH4 OAC<br>CEC<br>0.78<br>0.66<br>0.66<br>0.66<br>0.69<br>0.68                                 | 8xt.<br>Iron<br>0.039<br>0.036<br>0.045<br>0.026<br>0.026<br>0.026<br>0.026 | 8m<br>15-Bar<br>Water<br>0.41<br>0.41<br>0.44<br>0.43<br>0.44<br>0.44<br>0.46           |              | 26.5              | 4.6               | 31.1          | a.<br>b.<br>c.<br>d. | Fe-Mn:<br>(0.1-0<br>Fe-Mn:<br>(0.1-0<br>13 kg/:<br>Range | .05 mm<br>nodule<br>.05 mm<br>m <sup>2</sup> to<br>in dup | ).<br>s: ><br>).<br>60 inc<br>licate | 50 per<br>hes (M      | cent (<br>lethod | 2-0.1<br>6A).     | mm);        |          |                                                   |                    |
| 77-90<br>Depth<br>(In )<br>0-6<br>6-9<br>9-13<br>13-17<br>17-22<br>22-29<br>29-35<br>35-39       | 16.2<br>16.4<br>Patios 1<br>WH, OAC<br>CEC<br>0.78<br>0.68<br>0.66<br>0.66<br>0.69<br>0.68<br>0.70<br>0.71<br>0.73         | 0.035<br>0.035<br>0.035<br>0.047<br>0.058<br>0.026<br>0.026<br>0.026        | 7 8m<br>15-Ban<br>Water<br>0.41<br>0.41<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.46 |              | 26.5              | 4.6               | 31.1          | a.<br>b.<br>c.<br>d. | Fe-Mn:<br>(0.1-0<br>Fe-Mn:<br>(0.1-0<br>13 kg/:<br>Range | .05 mm<br>nodule<br>.05 mm<br>m <sup>2</sup> to<br>in dup | ).<br>s: ><br>).<br>60 inc<br>licate | 50 per<br>hes (M      | cent (<br>lethod | 2-0.1<br>6A).     | mm);        |          |                                                   |                    |
| 77-90<br>Depth (In )<br>0-6<br>6-9<br>9-13<br>13-17<br>17-22<br>22-29<br>29-35<br>35-39<br>45-50 | 16.2<br>16.4<br>Patios 1<br>WH, OAC<br>CEC<br>0.78<br>0.68<br>0.66<br>0.66<br>0.69<br>0.68<br>0.70<br>0.71<br>0.73         | 0.035<br>0.035<br>0.035<br>0.047<br>0.058<br>0.026<br>0.026<br>0.026        | 7 8m<br>15-Ban<br>Water<br>0.41<br>0.41<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.46 |              | 26.5              | 4.6               | 331           | a.<br>b.<br>c.<br>d. | Fe-Mn:<br>(0.1-0<br>Fe-Mn:<br>(0.1-0<br>13 kg/:<br>Range | .05 mm<br>nodule<br>.05 mm<br>m <sup>2</sup> to<br>in dup | ).<br>s: ><br>).<br>60 inc<br>licate | 50 per<br>hes (M      | cent (<br>lethod | 2-0.1<br>6A).     | mm);        |          |                                                   |                    |
| 77-90<br>Depth<br>(In)<br>0-6<br>6-9<br>9-13<br>13-17<br>17-22<br>22-29<br>29-35                 | 16.2<br>16.4<br>Ratios 1<br>WH4 OAC<br>CEC<br>0.78<br>0.68<br>0.66<br>0.66<br>0.69<br>0.68<br>0.70<br>0.71<br>0.73<br>0.73 | 18xt.<br>1ron<br>0.035<br>0.036<br>0.026<br>0.026<br>0.026<br>0.020<br>0.03 | 8m<br>15-Bar<br>Water<br>0.41<br>0.41<br>0.44<br>0.43<br>0.44<br>0.44<br>0.46           |              | 26.5              | 4.0               | 331           | a.<br>b.<br>c.<br>d. | Fe-Mn:<br>(0.1-0<br>Fe-Mn:<br>(0.1-0<br>13 kg/:<br>Range | .05 mm<br>nodule<br>.05 mm<br>m <sup>2</sup> to<br>in dup | ).<br>s: ><br>).<br>60 inc<br>licate | 50 per<br>hes (M      | cent (<br>lethod | 2-0.1<br>6A).     | mm);        |          |                                                   |                    |

R. 22 W., about 1 mile southwest of Allerton.

Vegetation and land use: Clover; cropland. Parent material: Wisconsin losss.

Physiography: Somewhat stable interfluve summit with slope alightly convex toward the northwest. Rlavation: 0.00 in respect to other sites in Allerton transect.

Slope: About 2 percent.

Drainage: Somewhat poorly drained.

Ground water: Water table at 70 inches.

Moistura: Very moist; reined 3 inches a few days before sampling.

Permeability: Moderately slow.

Described by: A. R. Hidlebsugh and R. I. Diderikaen; October 15, 1962.

(Colors are for moist soil unless otherwise stated)

Ap 17997 0 to 15 cm (0 to 6 inches). Wery dark gray (10YR 3/1) heavy silt loam, kneaded color the same; gray (10YR 5/1) when dry; moderate fine granular and some weak fine aubangular blocky structure; friable; abundant fine roots; very few dark grayish brown (2.5Y 4/2) wormcasts; very few fine soft dark brown accumulations of oxides; slightly actd (pH 6.2); clear smooth boundary.

A12 17998 15 to 23 cm (6 to 9 inches). Very dark gray (10YR 3/1) to dark gray (10YR 4/1) with a few peds of dark grayish brown (10YR 4/2); heavy to medium silt loam; kneeded color very dark grayish brown (10YR 3/2); gray (10YR 5/1 to 6/1) when dry; moderate fine granular structure; frisble; abundant fine roots; very few fine soft dark brown accumulations and very few fine hard black concretions of an oxide; medium acid (pH 5.6); clear smooth boundary.

A3 17999 23 to 33 cm (9 to 13 inches). Dark grayish brown (10YR 4/2 to 2.5Y 4/2) light silty clay loam, gray (10YR 6/1) when dry; kneaded color dark grayish brown (2.5Y 4/2); moderate very fine and fine subangular blocky structure; friable to firm; 10 percent very dark gray (10YR 3/1) coats on some peds; common fine roots; thin silt coats on ped exteriors; concretions of an oxide the same as above horizon; medium acid (pH 5.6); clear smooth boundary.

B1 18000 33 to 43 cm (13 to 17 inches). Dark grayish brown (2.57 4/2) heavy silty clay losm; kneaded color dark grayish brown (2.57 4/2); moderate very fine and fine subangular blocky structure; firm to frisble; few fine roots; thin silt coats on many peds; common fine soft dark brown and very few hard black accumulations of oxides; about 2 percent very dark gray (10YR 3/1) coars on some vertical faces; medium scid (pH 5.7); clear smooth boundary.

B21 18001 43 to 55 cm (17 to 22 inches). Dark grayish brown (2.5Y 4/2) silty clay; faces of peds very dark gray (10YR to 2.5Y 3/1) kmeaded color dark grayish brown (2.5Y 4/2); strong very fine and fine angular blocky structure; common fine yellowish brown (10YR 5/6) mottles; firm; distinct thin continuous clay films and some very dark gray (10YR 3/1) coats in fine pores; no silt coats; very few fine roots; very few very fine soft black accumulations of an oxide; slightly acid (pH 6.3); clear smooth boundary.

B22 18002 55 to 73 cm (22 to 29 inches). Olive gray (5Y 5/2) silty clay; faces of peds dark gray (5Y 4/1) strong fine subangular blocky structure; common to many fine yellowish brown (10YR 5/6) mottles; firm; distinct thin continuous clay films and a few costs of very dark gray (10YR 3/1) on vertical faces; very few very thin

SOIL Series not designated (sampled as Seymour 2011 Nos 862 IOWA-93-4 LOCATION Wayne County, Iowa

LAB. Nos. \_\_18054-18062 February 1967 SOIL SURVEY LABORATORY, Lincoln, Nehraska

|             |               |                  |                  |                   |                      |              |                   |              |            |           |                  |              |              |                      |       |               |             | - 457    |
|-------------|---------------|------------------|------------------|-------------------|----------------------|--------------|-------------------|--------------|------------|-----------|------------------|--------------|--------------|----------------------|-------|---------------|-------------|----------|
|             |               |                  | Total            | 1                 |                      | · · · ·      | 1                 | Send         |            | Sì        | it .             |              |              |                      |       | Coa           | irse fragme | nts 2A   |
| Depth       | Horizon       | \$and            | Silt             | Clay              | Very<br>coarse       | Coarse       | Medium            | Fine         | Very fine  |           | Int III          | int, ∏       |              |                      |       | <br> 2        | 2 - 19      | 19-7     |
| (ln.)       |               | (2-0 05)         | (0 05-<br>0.002) | ( <b>=</b> 0 002) | (2-1)                | (1-0.5)      | (0 5-0.25)        | (0.25-0.1)   | (0.1-0.05) | 0 05-0.02 | (0 02-<br>0.002) | (0.2-0 02)   | (2-0 1)      |                      |       | ` `           |             |          |
|             |               |                  | 0.002)           | 1                 | 1                    |              | !<br>t. of << 2 : | <br>         | l          | ·         | 1 0.002)         | ·            |              |                      |       | Pct.          |             | ct of    |
| 0-6         | Αp            | 3.9a             | 68.5             | 27.6              | 0.3                  | 1.0          | 0.8               | 0.8          | 1.0        | 32.4      | 36.1             | 33.8         | 2.9          |                      |       | -             |             |          |
|             | B1            | 2.0a             | 58.3             | 39.7              | 0.1                  | 0.4          | 0.4               | 0.5          | 0.6        | 24.6      | 33.7             | 25.5         | 1.4          |                      |       | tr            |             |          |
| 10-13       | B21           | 2,48             | 54.6             | 43.0              | 0.1                  | 0.5          | 0.4               | 0.6          | 0.8        | 23.0      | 31.6             | 24.1         | 1.6          |                      |       | tr            |             |          |
|             | B25           | 2.la             | 52.8             | 45.1              | tr                   | 0.4          | 0.4               | 0.6          | 0.7        | 21.3      | 31.5             | 22.3         | 1.4          |                      |       | tr            |             |          |
|             | 1823          | 2.24             | 56.0             | 41.8              | 0.1                  | 0.4          | 0.4               | 0.6          | 0.7        | 23.2      | 32.8             | 24.2         | 1.5          |                      |       | tr            |             |          |
|             | B31.<br>B32   | 1.6a             | 61.0<br>65.0     | 37.4<br>34.3      | tr<br>tr             | 0.2          | 0.2               | 0.4          | 0.8        | 24.8      | 36.2<br>40.3     | 25.8<br>25.1 | 0.8          |                      |       | tr            |             | +        |
|             | C1            | 1.2a             | 65.8             | 33.0              | tr                   | 0.2          | 0.2               | 0.4          | 0.4        | 21.6      | 44.2             | 22.2         | 0.8          |                      |       | -             |             |          |
|             | IIAb(?)       |                  | 64.8             | 27.0              |                      | 1.2          | 1.6               | 2.9          | 2.1        | 24.2      | 40.6             | 27.8         | 6.1          | ŀ                    |       | tr            |             |          |
|             |               |                  |                  | -,                |                      |              |                   |              |            |           | 1010             | -11-         |              |                      |       | <del></del> _ | <u> </u>    | 1        |
| _           |               |                  |                  |                   |                      |              |                   |              |            |           |                  |              |              |                      |       |               |             |          |
|             | 6Ala          | 6Bla             |                  |                   | 6 <b>E</b> 2a        | 6 <b>02a</b> | L .               | Bulk densit  | y          | 4D1       | W                | ater conte   | nt           | •                    |       |               | pH          |          |
| Depth       | Organic       | Nitrogen         | C/N              | '                 | Carbonate            | Ext.         | 4Ala              | 4ALd         | 4Alb       |           | 4 <b>B</b> 4     | 4Blc         | 4 <b>B</b> 2 | 4C1                  |       |               |             | 8c1      |
| (In)        | carbon        |                  | ľ                |                   | as CaCO <sub>3</sub> |              | Field-            |              | Air-       | COLE      | Field-           | 1/3-         | 15-          | 1/3-                 |       |               |             | (1,1)    |
|             |               |                  |                  |                   |                      |              | State             | Bar          | Dry        |           | State            | Bar          |              | <u>អ្នក កម្មខ្</u>   |       |               |             |          |
|             | b<br>श्टा.    | Pct              |                  |                   | Pet.                 | .Fe          |                   | -t           | _,,        |           | Dat              | n_4          | Pct.         | 15-Bar               |       |               |             | H2(      |
| <b>o</b> -6 | 1.77          | 0.155            | 11               |                   | FCI.                 | Pet.<br>0.8  | 1.37              | 1.35         | 1.44       | 0.02      | Pct<br>20.9      | Pct 22.8     | 10.9         | <u>in/in</u><br>0.16 |       |               | 1           | 5.1      |
|             | 0.65          | 0.058            |                  |                   |                      | 1.0          | 1.35              | 1.33         | 1.50       | 0.04      | 23.5             | 25.8         | 16.6         | 0.12                 |       |               |             | 5.0      |
|             | 0.57          | 0.055            | 10               |                   |                      | 1.2          | 1.36              | 1.33         | 1.54       | 0.05      | 23.7             | 26.5         | 18.6         | 0.10                 |       |               |             | 5.0      |
|             | 0.46          | 0.051            | 9                |                   |                      | 1.2          | 1.37              | 1.32         | 1.72       | 0.08      | 27.6             | 29.7         | 20.1         |                      |       |               |             | 5.0      |
|             | 0.28          | 0.039            |                  |                   |                      | 1.2          |                   | 1.3c         | '          |           | '                |              | 19.3         | _                    |       |               |             | 5.2      |
|             | 0.21          |                  | ,                |                   |                      | 1.0          | 1.44              | 1.36         | 1.79       | 0.09      | 26.5             | 28,8         |              | 0.15                 |       |               |             | 5.7      |
| 32-39       | 0.15          |                  |                  |                   |                      | 0.6          | l                 | 1.4c         |            |           |                  |              | 16.1         |                      |       |               |             | 6.0      |
|             | 0.17          |                  |                  |                   |                      | 1.1          | 1.70              | 1.50         | 1.78       | 0.06      | 16.5             | 25.0         | 16.8         | 0.12                 |       |               |             | 6.1      |
| 46-52       | 0,11          |                  |                  |                   |                      | 1.0          | 1.72              | 1,58         | 1.76       | 0,04      | 14.8             | 22,5         | 11.3         | 0.18                 |       |               |             | 6.4      |
|             |               |                  |                  | CD1 a             |                      | <u> </u>     | Cat.Ex            | <u> </u>     |            |           | <u> </u>         |              |              |                      | 800/3 | <u> </u>      | Base sat    |          |
| ŀ           | 6 <b>112a</b> | Extractable 602a | 6P2a             | 5Bla<br>602a      |                      | Ext.         |                   | 5Ala         |            |           |                  |              |              |                      | 005   |               | 5C3         | 5C1,     |
| Depth       | O MESS.       |                  | V4 E-0           | O-QL-C            |                      | Acidity      |                   | MELOAC       |            |           |                  |              |              |                      | Ca/Mg |               |             | IET, CA  |
| (ln.)       | Ca            | Mg               | Na               | K                 | Sum                  |              | Catalons          |              |            |           |                  |              |              |                      | ′ •   |               | Cation      |          |
|             | -             |                  |                  |                   | meq/100 g            |              |                   | <br>         |            |           |                  |              |              |                      |       |               | Pct.        | Pct.     |
|             | 12.7          | 4.3              | 0.1              | 0.5               | 17.6                 | 10.0         | 27.6              | 19.0         |            |           |                  |              |              |                      | 3.0   |               | 64          | 93       |
|             | 14.2          | 8.0              | 0.2              | 0.6               | 23.0                 | 13.3         | 36.3              | 24.8         |            |           |                  |              |              |                      | 1.8   |               | 63          | 93       |
|             | 15.7          | 9.8              | 0.4              | 0.7               | 26.6                 | 14.3         | 40.9              | 29.3         |            |           |                  |              |              |                      | 1.6   |               | 65          | 91       |
|             | 16.6          | 10.8             | 9.7              | 0.8               | 28.9                 | 14.6         | 43.5<br>40.5      | 30.6<br>30.2 |            |           |                  |              |              |                      | 1.5   |               | 66<br>74    | 94<br>99 |
|             | 17.3<br>16.7  | 10.8<br>10.1     | 1.0              | 0.8               | 29.9<br>28.5         | 10.6<br>7.8  | 36.3              | 28.1         |            |           |                  |              |              |                      | 1.7   |               |             | 101      |
|             | 15.5          | 9.2              | 1.0              | 0.6               | 26.3                 | 5.5          | 31.8              | 25.3         |            |           |                  |              |              |                      | 1.7   |               | 79<br>83    | 104      |
|             | 15.7          | 9.0              | 1.0              | 0.6               | 26.3                 | 6.6          | 32.3              | 24.9         |            |           |                  |              |              |                      | 1.7   |               | 81          | 106      |
|             | 10.5          | 5.7              | 0.7              | 0.3               | 17.2                 | 5.7          | ž2.9              | 16.8         |            |           |                  |              |              |                      | 1.8   |               | 75          | 102      |
|             |               |                  |                  |                   |                      |              |                   |              |            |           |                  |              |              |                      |       |               |             |          |
|             |               |                  |                  |                   |                      |              |                   |              |            |           |                  |              |              |                      |       |               |             |          |

|                | Ratios                      | to CLe | 2 8DT           |  |
|----------------|-----------------------------|--------|-----------------|--|
| Depth<br>(In.) | MEL <sub>L</sub> OAc<br>CEC |        | 15-Bar<br>Mater |  |
| 0-6            | 0.69                        | 0.03   | 0.38            |  |
| 6-10           | 0.62                        | 0.025  | 0.42            |  |
| 10-13          | 0.68                        | 0.028  | 0.43            |  |
| 13-18          | 0.68                        | 0.027  | 0.45            |  |
| 18-25          | 0.72                        | 0.029  | 0.46            |  |
| 25-32          | 0.75                        | 0.027  | 0.48            |  |
| 32-39          | 0.74                        | 0.02   | 0.47            |  |
| 39-46          | 0.75                        | 0.03   | 0.51            |  |
| 46-52          | 0,62                        | 0.04   | 0.42            |  |
|                |                             |        |                 |  |
|                |                             | 1      |                 |  |
|                | 1                           | 1      |                 |  |

a. Fe-Mn nodules: > 50 percent (2-0.1 mm); \$25-50 percent (0.1-0.05 mm).
 b. 8.2 kg/m² to 52 inches (Mathod 6A).
 c. Estimated.

Pedon classification: Udollic Ochraqualf; fine, montmorillonitic, mesic.

Series classification: Aquic Argiudoll; fine, montmorillonitic, mesic.

Soil: Series not designated (sampled as Seymour)1/.
Soil no.: \$62-Iowa-93-4 (LSL Nos. 18054 - 18062).
Location: Wayne County, Iowa; 272 feet west and 449 feet south of center of road in northeast corner of the SW & Sec. 3, T. 68 N., R. 20 W, about 2 miles south of Promise City.

Vegetation and land use: Oats stubble; cropland.

Parent material: Wisconsin loess.

Physiography: Unstable crest of a narrow interfluve extending to the north.

Elevation: 3.43 feet below S62-lowa-93-6.

Slope: About 3 percent.

Drainage: Somewhat poorly drained.

Ground water: None noted. Moisture: Slightly moist.

Permeability: Moderately slow.
Described by: A. R. Hidlebaugh and R. I. Dideriksen; October 17, 1962.

(Colors are for moist soil unless otherwist stated)

Ap 18054 0 to 15 cm (0 to 6 inches). Very dark gray (10YR 3/1) light silty clay loam; gray (10YR 5.4/1) when dry; kneaded color is very dark grayish brown (10YR 3/2); few peds of dark grayish brown (10YR 4/2) mixed in horizon; weak medium subangular blocky and some fine granular structure; friable; very few very fine soft strong brown and black accumulations of an oxide; abundant fine roots; abrupt smooth boundary.

B1 18055 15 to 25 cm (6 to 10 inches). Brown (10YR 4/3) heavy silty clay loam, pale brown (10YR 6/3) when dry; common fine yellowish brown (10YR 5/4) mottles; moderate very fine subangular blocky structure; friable; some very dark gray fills from Ap horizon; very few very fine soft strong brown and few black accumulations of an oxide; abundant fine roots; clear smooth boundary,

B21 18056 25 to 33 cm (10 to 13 inches). Dark grayish brown (10YR 4/2) light silty clay; faces of some peds grayish brown (10YR 5/2); strong very fine subangular blocky structure; common fine yellowish brown (10YR 5/4) mottles on faces of peds and many fine strong brown (7.5YR 5/6) mottles in peds; firm; very thin discontinuous clay films; thin silt coats on many peds; common very fine hard black concretions of an oxide; common fine roots; clear smooth boundary.

B22 18057 33 to 45 cm (13 to 18 inches). Grayish brown (2.5Y 5/2) silty clay; many fine strong brown (7.5YR 5/6) mottles; strong very fine angular and subangular blocky structure; firm; thin discontinuous clay films of dark grayish brown (10YK 4/2) color; common fine soft black accumulations of an oxide; few fine roots; clear smooth boundary.

B23 18058 45 to 63 cm (18 to 25 inches). Grayish brown (2.5Y 5/2) light silty clay; faces of peds olive gray (5Y 5/2) weak medium prismatic structure parting to moderate fine angular blocky; many coarse strong brown (7.5YR 5/6) mottles; firm; thin discontinuous clay films on peds; some silt coats on many peds; few dark gray clay films on faces; very few fine soft black accumulations of an oxide; few fine inped tubular pores; very few very fine roots; clear wavy boundary.

831 18059 63 to 80 cm (25 to 32 inches). Mixed grayish brown (2.5Y 5/2) and strong brown (7.5YR 5/6) heavy silty clay loam; weak medium prismatic structure parting to moderate medium subangular blocky; firm; few thin discontinuous clay films with some orientation on prism faces; thin silt grains on most peds; common fine soft black accumulations of an oxide; common fine inped tubular pores; gradual wavy boundary.

B32 18060 80 to 100 cm (32 to 39 inches). Gray (5Y 5/1) medium silty clay loam; faces of peds olive gray (5Y 5/2) weak medium to coarse prismatic structure parting to moderate medium subangular blocky; common medium strong brown (7.5YR 5/6) mottles; firm; few dark gray clay coats in pores and on some prism faces; thin silt coats on most peds; common fine inped tubular pores; very few very fine soft black accumulations of an oxide; diffuse smooth boundary.

Cl 18061 100 to 118 cm (39 to 46 inches). Olive gray (5Y 5/2) light silty clay loam; weak coarse prismatic structure parting to week coarse subangular blocky structure; common fine strong brown (7.5YR 5/6) and reddish brown (5YR 4/4) mottles; firm; very few dark gray clay films on prism faces and as coats in pores; very thin silt coats on some peds; common fine inped tubular pores; abrupt irregular boundary.

IIAb? 18062 118 to 133 cm (46 to 52 inches). Mixed dark gray (10YR 4/1) and dark yellowish brown (10YR 3/4) gritty silty clay loam; paleosol; clear quartz grains present.



1/This pedon lacks a mollic epipedon. As described, the solum is thinner than typical for the series and the clay maximum is a few percent less than the ranges allow. This pedon was sampled as part of a transect study, not as one representative of the series.

Remarks: Consistence at moist field conditions.

SOIL Nos. S62 Iowa-93-5 LOCATION Wayne County, Iowa

SOIL SURVEY LABORATORY, Lincoln, Nebraska

LAB. Nos <u>18045-18053 February 1967</u>

|                |              |              | Total        |              |                      |            |                    |                                               | s and parti |           |                  | 3A1          |              |                 |                                                  |                |                | _                  |
|----------------|--------------|--------------|--------------|--------------|----------------------|------------|--------------------|-----------------------------------------------|-------------|-----------|------------------|--------------|--------------|-----------------|--------------------------------------------------|----------------|----------------|--------------------|
|                |              |              | 10tai        |              |                      |            |                    | Sand                                          |             | St        | ilt.             |              |              |                 |                                                  | _ Coa          | rse fragme     | nts 2/             |
| Depth          | Horizon      | Sand         | Sit          | Clay         | Very                 | Coarse     | Medium             | Fine                                          | Very fine   |           | int III          | Int II       |              |                 |                                                  | <b>&gt;-</b> 2 | 2 - 19         | 19-                |
| (in)           |              | (2-0.05)     | (0.05-       | ( < 0 002)   | (2-1)                | (1-0 5)    | (0 5-0.25)         | (0 25-0 1)                                    | (0 1-0 05)  | 0.05-0 02 | (0 02-<br>0 002) | (0 2-0.02)   | (2-0.1)      |                 |                                                  |                |                | t, of              |
|                |              |              |              |              |                      | Pc         | t of == 2          | <i></i>                                       |             |           | . 0 002,         |              |              |                 |                                                  | Pet.           | <b></b>        | 6mm                |
| 0-6            | Ap           | 3.6a         | 63.4         | 33.0         | 0.1                  | 0.7        | 0.8                | 1.0                                           | 1.0         | 30.3      |                  | 31.8         | 2.6          |                 |                                                  | tr             |                | ]                  |
| 6-9            | B21          | 2.8a         | 53.2         | 44.0         | 0.3                  | 0.7        | 0,4                | 0.7                                           | 0.7         | 25.2      |                  | 26.3         | 2,1          |                 |                                                  | -              |                |                    |
| 9-14<br>14-19  | B22          | 1.5a         | 50.4<br>53.2 | 48.1<br>45.4 | t <u>r</u>           | 0.3        | 0.3                | 0.5                                           | 0.4         | 20.7      | 29.7<br>30.7     | 21.4<br>23.1 | 1.0          | <b>├</b>        | <del> </del>                                     | -              | l —            |                    |
| 19-25          | B31          | 1.8          | 58.2         | 40.0         | 0.1                  | 0.3        | 0.2                | 0.5                                           | 0.6         | 27.5      | 30.7             | 28.4         | 1.2          |                 | 1                                                | tr             |                |                    |
| 25-31          | B32          | 1.0a         | 62.9         | 36.1         | 0.1                  | 0.2        | 0.1                | 0.2                                           | 0.4         | 27.1      | 35.8             | 27.6         | 0.6          |                 |                                                  | [              |                |                    |
| 31-36          | <b>B3</b> 3  | 0.6a         | 63.9         | 35.5         | tr                   | 0.1        | 0.1                | 0.1                                           | 0.3         | 22.7      | 41.2             | 23.1         | 0.3          |                 | <del>                                     </del> |                | <del> </del>   | ╆-                 |
| 36-46          | B34          | 2.2a         | 64.5         | 33.3         | tr                   | 0.3        | 0.4                | 0.7                                           | 0.8         | 20.2      |                  | 21.4         | 1.4          |                 |                                                  | -              |                |                    |
| 46-52          | IIAb(?)      | 7.9          | 63.1         | 29.0         | 0.3                  | 1.0        | 1.6                | 2.8                                           | 2.2         | 24.3      | 38.8             | 28.0         | 5.7          | <u> </u>        | L                                                | - <del>-</del> | <b>↓</b>       |                    |
|                |              |              |              |              |                      |            |                    |                                               |             |           |                  |              |              |                 |                                                  |                |                |                    |
|                | 6Ala         | 6Bla         | İ            |              | 6 <b>E2a</b>         | 6¢2a       |                    | Bulk densit                                   |             | 4DI       |                  | ater conte   |              |                 | <del>                                     </del> |                | рH             | <u> </u>           |
| Depth          | Organic      | Nitrogen     | C/N          |              | Carbonate            | Exct.      | 4Ala               | 4Ald                                          | 4Alb        |           |                  | 4Blc         | 4 <b>B</b> 2 | 4C1             |                                                  |                |                | 8c                 |
| (in )          | carbon       |              |              |              | as CaÇO <sub>3</sub> |            | Field.<br>State    |                                               | Air-        | COLE      | Field-           |              | 15-          | 1/3-            |                                                  |                |                | a                  |
|                | ъ            |              |              |              |                      | as<br>Fe   | SULTE:             | Bar                                           | Dry         |           | State            | Bar          | Bar          | minus<br>15-Bar |                                                  |                |                | He                 |
|                | Pct          | Pct.         |              |              | Pct                  | Pet.       | g/cc               | g/cc                                          | g/cc        |           | Pct              | Pct          | Pct.         | n/in            |                                                  |                |                | 15                 |
| 0-6            | 1.68         | 0.151        | 1,1,         |              |                      | 1.2        | 1.36               | 1.35                                          | 1.51        | 0.04      | 24.4             | 24.6         | 14.0         |                 |                                                  |                |                | 5                  |
| 6-9            | 0.82         | 0.080        | 10           |              |                      | 1.4        |                    | 1.3c                                          |             |           |                  |              | 18.9         | l .             |                                                  |                |                | 5                  |
| 9-14           |              | 0.067        | 10           |              | <u> </u>             | 1.4        | 1.32               | 1.29                                          | 1.76        | 0.10      | 31.8             | 32.2         | 20.9         | 0.14            | <u> </u>                                         |                | <u> </u>       | 5                  |
| 14-19          |              | 0.050        | 8            |              |                      | 1.1        | 1                  | 1.40                                          | . 00        |           |                  |              | 19.6         | 0.16            |                                                  |                |                | 5                  |
| 19-25<br>25-31 | 0.28         | 0.036        | 8            |              | 1-1                  | 0.9        | 1.52               | 1.41<br>1.4c                                  | 1.83        | 0.08      | 23.1             | 28.2         | 18.6<br>16.9 | 0.14            |                                                  |                |                | 5                  |
| 31-36          | 0.15         |              |              |              | -(s)                 | 0.9        | 1.60               | 1.43                                          | ĭ.75        | 0.06      | 19.8             | 28.4         | 16.7         | 0.17            |                                                  |                | <del> </del>   | 6                  |
| 36-46          | 0.13         |              |              |              | -(s)<br>-(s)         | 1.ó        |                    | 1.5c                                          | 2017        | ****      | 4,,,,            | , ,          | 15.8         | 0.+1            |                                                  |                |                | 6                  |
| <u>16-52</u>   | 0,11         |              |              |              |                      | 0.8        | 1.66               | 1.54                                          | 1.74        | 0.04      | 18.0             | 24.7         | 12.7         | 0.18            |                                                  |                | ├              | 6                  |
|                |              |              |              |              |                      |            |                    |                                               |             |           |                  |              |              | l               |                                                  |                |                |                    |
|                |              | Extractat    | le bases     | 5 <b>Ela</b> |                      | 6Hla       | Cat. B             | ch.Oap.                                       |             |           |                  |              |              |                 | 803                                              |                | _Base sat      | uratio             |
| Depth          | 6 <b>π≥a</b> | 602a         | 6P2a         | 692a         |                      | Exct.      | 5A3a               | 5Ala                                          |             |           |                  |              |              |                 | - /-                                             |                | 5C3            | 50                 |
| (in )          | Ca           | Mg           | Na           | ĸ            | Sum                  | Acidity    | Datkons<br>Datkons | NEO <sub>4</sub> OAc                          |             |           |                  |              |              |                 | Ca/Mg                                            |                | Sum<br>Cations | MET <sup>†</sup> ( |
|                | -4           | l            | l            |              | <br>meg/100 g        |            | l<br>              | <u>,                                     </u> |             |           |                  |              |              |                 |                                                  |                | Pct            | Pc                 |
| o-6            | 16.4         | 5.8          | 0.1          | 0.5          | 22.8                 | 10.4       | 33.2               | 24.6                                          |             |           |                  |              |              |                 | 2.8                                              |                | 69             | 9                  |
| 6-9            | 18.3         | 9.6          | 0.2          | 0.8          | 28.9                 | 12.7       | 41.6               | 31.6                                          |             |           |                  |              |              |                 | 1.9                                              |                | 69             | 9                  |
| 9-14           | 19.9         | 10.8         | 0.4          | 0.9          | 32.0                 | 11.5       | 43.5               | 33.2                                          |             |           |                  |              |              | ⊢-              | 1.8                                              |                | 74             | 10                 |
| 14-19<br>19-25 | 19.5<br>18.4 | 11.0<br>10.3 | 0.5          | 0.8<br>0.6   | 31.8<br>30.0         | 9.3<br>7.2 | 41.1<br>37.2       | 31.8<br>27.8                                  |             |           |                  |              |              |                 | 1.8                                              |                | 77<br>81.      | 10                 |
| 25-31          | 17.0         | 9.5          | 0.8          | 0.6          | 27.9                 | 4.6        | 32.5               | 24.3                                          |             |           |                  |              |              |                 | 1.8                                              |                | 86             | n                  |
| 31-36          | 16.7         | 9.3          | 0.9          | 0.6          | 27.5                 | 4.5        | 32.0               | 24.3                                          |             |           |                  |              |              |                 | 1.8                                              |                | 86             | 11                 |
| 36-46          | 15.6         | 8.2          | 0.8          | 0.6          | 25.2                 | 4.8        | 30.0               | 22.6                                          |             |           |                  |              |              |                 | 1.9                                              |                | 84             | 11                 |
| 46-52          | 11.2         | 6.2          | 0.6          | 0.4          | 18,4                 | 3.8        | 22.2               | 17.4                                          |             |           |                  |              |              |                 | 1.8                                              |                | 83             | 10                 |
|                |              | L            |              |              |                      | _          |                    |                                               |             |           |                  |              |              |                 |                                                  |                |                |                    |
|                | Ratios       | to C         | ay 8D1       |              |                      | a.: Fe     | - Ma vo            | สมโคร -                                       | > 50        | neros     | ent (2-          | 0.1. ==      | .). 20       | 5-50 m          | ercent                                           | (0.1-          | 0.05 m         | m).                |
| Depth          | NHL OAC      |              | 15-Bax       |              |                      |            | 2 kg/1             |                                               |             |           |                  |              | -,, -,       | , ,- 5          |                                                  | ,              | ,              | -, ·               |

Depth (In.)

O-6

O-75

Pedon classification: Udollic Ochraqualf; fine, montmorillonitic, mesic.

Series classification: Aquic Argiudoll; fine, montmorillonitic, mesic.

Soil: Series not designated (sampled as Seymour)1/.

Soil no.: S62-Iowa-93-5 (LSL Nos. 18045 - 18053). Wayne County, Iowa; 342 feet west and 342 feet south of center of road in northeast corner of SW Location: 1/4 Sec. 3, T. 68 N., R. 20 W., about 2 miles south of Promise City.

Vegetation and land use: Oats stubble; cropland.

Parent material: Wisconsin loess.

Physiography: Lower portion of an unstable sideslope position with slope convex toward the east. Elevation: 3.30 feet below S62-Iowa-93-6.

Slope: About 5 percent.

Drainage: Somewhat poorly drained.

Ground water: None noted. Moisture: Slightly moist.

Permeability: Moderately slow.

Described by: A. R. Hidlebaugh and R. I. Dideriksen; October 17, 1962.

(Colors are for moist soil unless otherwise stated)

Ap 18045 0 to 15 cm (0 to 6 inches). Very dark gray (10YR 3/1) light silty clay loam, gray (10YR 5/1) when dry; weak fine subangular blocky and fine granular structure; friable; few dark grayish brown (10YR 4/2) peds or wormcasts; very few fine soft dark brown concretions of an oxide; abundant fine roots; abrupt smooth boundary.

B21 18046 15 to 23 cm (6 to 9 inches). Very dark grayish brown (10YR to 2.5Y 3/2) light silty clay, grayish brown (10YR 5/2) to light brownish gray (10YR 6/2) when dry; few fine olive brown (2.5Y 4/4) mottles on faces of peds and common fine yellowish brown (10YR 5/6) mottles in ped; firm; moderate to strong very fine subangular blocky structure; few thin discontinuous clay films; few thin silt coats on some peds; some tonguing of very dark gray (10YR 3/1) silty clay loam from above horizon; few fine soft dark brown and black accumulations of an oxide; common fine roots; clear smooth boundary.

23 to 35 cm (9 to 14 inches). Dark grayish brown (2.5Y 4/2) silty clay; common fine yellowish brown (10YR 5/4) mottles on faces of peds to medium mottles of same color in peds; firm; strong very fine angular and subangular blocky structure; thin continuous clay films; very dark gray silty clay loam fills from above continue in this horizon; common fine inped tubular pores; common fine roots; clear smooth boundary.

35 to 48 cm (14 to 19 inches). Dark grayish brown (2.5Y 4/2) silty clay; common fine yellowish brown (10YR 5/6) mottles on faces of peds and many fine and medium yellowish brown to strong brown (10YR to 7.5YR 5/6) mottles in peds; structure same as B22; firm; few thin discontinuous clay films; few thin silt coats on some peds; common fine inped tubular pores; few fine roots; oxides like B22 horizon; clear smooth boundary.

B31 18049 48 to 63 cm (19 to 25 inches). Olive gray (5Y 5/2) heavy silty clay loam; many medium yellowish brown (10YR 5/4 to 5/6) mottles; weak medium prismatic structure parting to moderate fine and medium subangular blocky; firm; few thin discontinuous clay films on prism faces and few very dark gray clay coats in fine pores; distinct oblique pressure faces; few fine black hard concretions of an oxide; thin silt coats on peds; common fine inped tubular pores; clear smooth boundary.

B32 18050 63 to 78 cm (25 to 31 inches). Same color and texture as above; weak medium prismatic structure parting to moderate medium subangular blocky; common fine yellowish brown (10YR 5/4) mottles on faces of peds grading to strong brown (7.5YR 5/6) in peds; firm; gray (5Y 5/1) on ped exteriors are thin silt coats; few very dark gray clay coats in pores and a few 's-inch clay ball accumulations, no clay films on peds; distinct oblique pressure faces; common fine inped tubular pores; gradual smooth boundary.

78 to 90 cm (31 to 36 inches). Same color as B31 horizon; medium silty clay loam; few to common fine yellowish brown mottles; moderate medium prismatic structure parting to moderate fine blocky; firm; very few dark gray clay coats in pores and on a few prism faces; thin silt coats on peds; common fine inped tubular pores; gradual wavy boundary.

B34 18052 90 to 118 cm (36 to 46 inches). Same color as B31 horizon; medium silty clay loam; many medium yellowish brown (10YR 5/6) to strong brown (7.5YR 5/6) mottled; weak coarse to medium prismatic structure

SON Seymour silt loam SOIL Nos. 362 Iowa-93-2 LOCATION Wayne County, Iowa \_ LAB. Nos. \_ 18011-18020 Lincoln, Nebraska February 1967 SOIL SURVEY LABORATORY \_ General Methods: 1A, 1R1b, 2A1, 2B Size class and particle drameter (mm) Sand Coarse fragments 2A2 Međrum Sand Clay Int III Int II Deuth Harizon Coarse Very fine 2 - 19 | 19 76 **>** 2 (2-0.05) (0.05-Coarse (2-1) (1-0 5) (0 5-0 25) (0 25-0 1) (0 1-0 05) 0 05-0 02 (0 02-002) (0 2-0.02) (2-0.1) (= 0 002) (n) Pct of <= 76mm 30.5 0.2 34.8 0.4 0.7 31.0 | 35.3 27.5 | 34.5 21.4 | 31.6 18.5 | 28.2 32.3 2.2 28.6 2.4 66.3 3.2a 0-6 Alp 0.6 0.7 0.8 6-17 **A**3 3.2a 62.0 0.6 0.8 44.9 <u>11-16</u> BO. <u>2. la</u> 53.0 46.7 0.1 0.3 0.3 0.5 0.9 22,6 1.2 16-19 B21 1.6a 51.7 tr 0.2 0.2 0.5 19.5 19.6 19-23 **B22** 2.0a 50.0 48.0 0.1 0.3 0.3 0.7 0.6 30.4 20.6 1.4 54.8 0.3 0.5 21.5 22.7 23-28 B23 1.0a 44.5 0.1 0.1 33.3 22.2 0.5 35.0 36.0 39.3 28-32 57.7 B37 1.48 40.9 0.1 0.1 0.5 23.7 0.7 62.8 36.5 26.8 32-43 B32 0.7ь tr tr 0.2 0.5 27.4 0.2 43-51 35.1 40.4 25.0 Cl 0.6b 64.3 tr  $\operatorname{tr}$ tr 0.1 0.5 25.6 0.1 0.2 IIAb(1) 3.2 56.4 0.1 0.5 1.1 1.3 21.0 35.4 22.9 1.9 6Ala 6Bla 602a Bulk density 4 DI ρН COLE Field | 1/2 4Ala 4Ald 4A1b 4RO 4CI 8Cla Ext. Depth Organic Nitrogen C/N Carbonate Iron Field-15-1/3-1/3-Aircarbon (ln) as CaCO<sub>2</sub>  $(1 \ 1)$ Bar Dry 8.5 State Bar mious Fе H20 C Pct 15-Bar Pct Pct Pct. in./in Pct 0.187 28.7 0-6 2.12 11 1.2 1.33 1.36 1.46 0.02 26.4 13.2 0.18 5.3 1.35 0.118 1.35 1.28 1.48 14.6 5.2 6-11 1.29 11 1.4 0.03 27.7 26.2 0.16 0.087 1.50 31.6 5.3 5.4 5.4 11-16 1.0 1.6 0.05 28.4 20.5 0.10 0.91 16-19 0.76 0.075 10 1.6 1.34 22.2 1.28 0.061 1.24 1.80 0.12 34.8 33.4 21.6 0.15 19-23 0.66 11 1.6 0.042 <u>1.3</u>6 0.8 1.32 1.84 0.10 31.9 31.5 5.7 6.1 23-28 0.32 19.9 0.15 28-32 0.24 2.0 1.4d 19.7 6.3 6.4 6.3 1.54 24.8 28.1 0.16 1.42 1.80 0.08 17.4 0.15 32-43 0.7 27.9 1.58 1.44 1.76 1.81 23.1 16.8 43-51 0.06 0.16 0.13 0.6 0.08 0.5 1.54 1.40 17.4 0.15 51-60 0.15 SB1a 6PIA 5IE ਲਿਲ 8D3 Base saturation 6Hla Cat. Exch. Can 5Bla Sol. Exch. Water Resist Elec. 6№a 602a 6P2a 602a Ext. 5A3a 5Ala 5C3 Depth Na Accidity Sum NH4OAc Cond. Na at Sum NB),OAc Ca/Mg ivity (in ) Sat. Сa Mg Na Sum Cestatons Cations е ohms mmhos.me./1 Fct. Pet. Pct Pct eq/100 g 33.0 22.9 32.4 22.9 0.9 14.8 0-6 12.6 4.2 18.2 3.0 55 57 66 6-11 11.9 5.8 0.2 0.5 18.4 14.0 2.1 80 11-16 16,2 0.6 <u>0.8</u> 8.6 26.2 13.6 39.8 29.4 1.8 89 16-19 19.7 32.4 12.0 44.4 33.6 31.9 73 96 10.7 0.9 1.1 11.3 19-23 19.8 1.0 0.8 32.3 43.6 1.9 74 101 10.7 79 83 88 23-28 19.1 31.4 8.2 39.6 28.9 1.8 109 10.5 0.7 37.4 33.0 32.1 28.7 28-32 19.0 10.2 1.2 0.6 31.0 6.4 1.9 108 17.9 1700 0.47 2.7 3.6 55.2 32-43 9.3 1.1 0.6 28.9 4.1 26.7 1,9 108 43-51 27.9 25.6 87 109 32.6 51-60 17.2 8.8 1.0 0.5 27.5 5.1 25.9 2.0 106 Ratios to Clay 8D1 Fe-Mn nodules: > 50 percent (2-0.1 mm); 25-50 percent (0.1-0.05 mm). Fe-Mn nodules: > 50 percent (2-0.1 mm); 5-25 percent (0.1-0.05 mm). 12 kg/m² to 60 inches (Method 6A). a. Ext. 15-Bar NH<sub>U</sub> OAC ъ. (In.) Iron Water c. CEC Estimated. đ. e. Saturated paste. 0.039 0.43 0.75 6-11 0.66 0.040 0.42 0.65 0.036 0.46 <u> 11-16</u> 16-19 0.65 0.033 0.43 19-23 0.66 0.033 0.45 23-28 0.65 0.02 0.45 0.48 28-32 0.05 0.70 32-43 0.73 0.02 0.48 43-51 0.73 0.02 0.48 0.01 0.43

Pedon classification: Aquic Argiudoll; fine, montmorillonitic, mesic.

Series classification: (Same as pedon) .

Soil: Seymour silt loam .

Soil no.: 862-lows-93-2 (LSL Nos. 18011 - 18020) .

Location: Wayne County, Iowa; 288 feet south and 223 feet west of the northeast corner of the SW % Sec. 9,

ت تنزيع

Vegetation and land use: Clover; cropland.

Parent material: Wisconsin loess.

Physiography: Lower portion of an unstable sideslope position with slope convex toward the west.

Elevation: 1.8 feet below S62-Iowa-93-1.

Slope: About 5 percent.

Drainage: Somewhat poorly drained.

Ground water: Seepage at 51 inches.

Moisture: Very moist; rained 3 inches a few days before sampling.

Permeability: Moderately slow.

Described by: A. R. Hidlebaugh and R. E. Mideriksen; October 16, 1962.

(Colors are for moist soil unless otherwise stated)

Alp 18011 0 to 15 cm (0 to 6 inches). Very dark gray (10YR 3/1) heavy silt losm, gray (10YR 5/1) when dry; weak medium subangular blocky and moderate fine granular structure; friable; abundant fine roots; very few very fine soft dark brown and black accumulations of an oxide; strongly acid (pH 5.5); abrupt smooth boundary.

A3 18012 15 to 28 cm (6 to 11 inches). Very dark gray (10YR 3/1) light to medium silty clay loam; some dark grayish brown (10YR 4/2) peds increasing in number with depth; gray (10YR 5/1 to 6/1) when dry; moderate very fine subangular blocky with some granular structure; friable; few thin silt coats on peds; abundant fine roots; very few fine soft dark brown and black accumulations of an oxide; strongly acid (pH 5.4); clear smooth boundary.

B1 18013 28 to 40 cm (11 to 16 inches). Dark grayish brown (2.5Y 4/2) light silty clay, faces of peds dark gray (10Y 4/1) gray to light gray (10YR 6/1) when dry; common fine yellowish brown (10YR 5/6 to 5/8) mottles; kneaded color is dark grayish brown (2.5Y 4/2); strong very fine subangular blocky structure; firm; some silt coats on peds; few thin discontinuous clay films at 14 inches and below; very few medium black hard concretions of an oxide; some evidence of 3/1 silty clay loam fills in cracks and crevices; medium acid (pH 5.6); clear smooth boundary.

B21 18014 40 to 48 cm (16 to 19 inches). Same color as above; silty clay; strong fine and very fine subangular blocky structure; common fine yellowish brown (10YR 5/6 to 5/8) mottles with many in interior of peds; firm; thin deatinuous clay films on peds, some very dark gray silty clay loam fills from above; few fine roots; medium acid (pH 5.8); clear smooth boundary.

B22 18015 48 to 58 cm (19 to 23 inches). Same as above horizon except a decrease in dark gray (10YR 4/1) colors; medium acid (pH 5.8); clear smooth boundary.

B23 18016 58 to 70 cm (23 to 28 inches). Olive gray (5Y 5/2) light silty clay; few fine grayish brown to light olive brown (2.5Y 5/3) and many fine strong brown (7.5YR 5/6) mottles in peds; moderate medium and fine subangular blocky structure; firm; very few thin patchy clay films and some clay flows in fine pores; some very dark gray silty clay loam fills from above horizons; some very thin silt coats on peds; few fine inped tubular pores; few to common fine black hazd concretions of an oxide; neutral (pH 6.6); clear smooth boundary.

B31 18017 70 to 80 cm (28 to 32 inches). Strong brown (7.5YR 5/6) with few peds of olive gray (5Y 5/2); medium to heavy silty clay loam; moderate medium subangular blocky structure; firm; zone of iron accumulation—more diffuse pattern to the left of sampling hole; oblique pressure faces; moisture present on peds; few dark gray costs in root channels; abundant fine black hard concretions of an oxide; neutral (pH 6.6); clear wavy boundary.

B32 18018 80 to 110 cm (32 to 43 inches). Gray (5Y 5/1) and olive gray (5Y 5/2) medium silty clay loam; common fine strong brown (7.5YR 5/6) mottles with some vertical distribution; weak coarse subangular blocky structure; firm; some dark gray coats in pores and 4-inch clay balls which are very dark gray in color; distinct silt coats on peds; common fine inped tubular pores; distinct oblique pressure faces; neutral (pH 6.7); clear wavy boundary.

833 18019 110 to 130 cm (43 to 51 inches). Same color as above; medium silty clay loam; weak coarse subangular blocky structure; weak horizontal band of common fine strong brown (7.5YR 5/6) mottles; firm; few dark gray discontinuous clay films on some peds; common fine inped tubular pores; exterior color is grainy coat of gray (5Y 5/1) and interior of ped is clive gray (5Y 5/2) in color; some oblique pressure faces; neutral (pH 6.7); abrupt wavy boundary.

IIAb? 18020 130 to 153 cm (51 to 60 inches). Dark gray (10YR 4/1) heavy silty clay loam with noticeable sand; involuted Ab with tonguing of clive gray (5Y 5/2) loss into the paleosol; common medium dark yellowish brown (10YR 3/4) mottaes; mottling increases at 60 to 64 inches; neutral (pH 6.7).

ALLERTON TRANSECT

U S DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

|                |          | SOIL                | Seymour s1   | lt loam         |         | SOIL Nos. | S621owa-93-3            | _ LOCATION    | Wayne County, | , Iowa                                |  |
|----------------|----------|---------------------|--------------|-----------------|---------|-----------|-------------------------|---------------|---------------|---------------------------------------|--|
|                |          | SOIL SHRVE          | Y LABORATORY | Lincoln, Ne     | ebraska |           |                         | IAR Nos       | 18021-18033   | February_1967                         |  |
|                |          | General             | Methods:     | LA, 1816, 2A    | l. 2B   |           |                         | 6/10. 1103    | ,             |                                       |  |
|                |          |                     |              |                 | •       |           | Size class and particle | diameter (mm) | 3A1           |                                       |  |
|                |          | C                   | <u> </u>     |                 |         |           | ſ                       |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               | ı                                     |  |
|                | _        |                     |              |                 |         |           |                         |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               | 1                                     |  |
|                |          |                     |              |                 |         |           |                         |               |               | ,                                     |  |
|                | <b>L</b> |                     |              |                 |         |           |                         |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               |                                       |  |
| _              | ,        |                     |              |                 |         |           |                         |               |               |                                       |  |
| _              | t . —    |                     |              |                 |         |           |                         |               |               |                                       |  |
|                |          | i .                 | _            | -               |         | - t       |                         |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               |                                       |  |
|                | Sec. 1   | . ii <del>ssi</del> | i .          |                 |         |           |                         |               | # %s          |                                       |  |
|                | 1n .     |                     |              |                 |         |           | ζ,                      |               |               |                                       |  |
| 1              | <u> </u> |                     |              |                 |         |           |                         |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               |                                       |  |
| - 1            |          |                     |              |                 |         |           |                         |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               |                                       |  |
| ď              |          |                     |              |                 |         |           |                         |               |               |                                       |  |
|                | 4        |                     |              |                 |         |           |                         |               |               |                                       |  |
|                | 46       |                     |              |                 |         |           |                         |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               |                                       |  |
| •              |          |                     |              |                 |         |           |                         |               |               |                                       |  |
| 10             | _        |                     |              |                 |         |           |                         |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               |                                       |  |
|                | <u> </u> |                     |              |                 |         |           |                         |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               |                                       |  |
| 1              |          |                     |              | ts <del>-</del> |         |           |                         |               |               |                                       |  |
| λ-3λ1<br>-   - | 9        |                     |              |                 |         |           |                         |               |               | · · · · · · · · · · · · · · · · · · · |  |
|                |          |                     |              |                 |         |           |                         |               |               |                                       |  |
| ľŁ             |          |                     |              |                 |         |           |                         |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               |                                       |  |
| 1              |          |                     |              |                 |         |           |                         |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               |                                       |  |
| _              |          |                     |              |                 |         |           |                         |               |               |                                       |  |
| _              |          |                     |              |                 |         |           |                         |               |               |                                       |  |
| 1              |          |                     |              |                 |         |           |                         |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               |                                       |  |
|                | Ł        |                     |              |                 |         |           |                         |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               |                                       |  |
| 7              |          |                     |              |                 |         |           |                         |               |               |                                       |  |
|                |          |                     |              |                 |         |           |                         |               |               |                                       |  |

Pedon classification: Aquic Argiudoll; fine, montmorillonitic, mesic.

Series classification: (Same as pedon).

Soil: Seymour silt loam.

Soil no.: S62-Iowa-93+3 (LSL Nos. 18021 - 18033) .

Location: Wayne County, Iowa; 222 feet south and 177 feet west of the northeast corner of the SE% Sec. 9,

T. 68 N., R. 22 W., about 1 mile southwest of Allerton.

Vegetation and land use: Clover, cropland.

Parent material: Wisconsin loess.

Physiography: Unstable crest of a narrow interfluve extending to the north.

Elevation: 0.60 foot below S62Iowa-93-1.

Slope: About 3 percent.

Drainage: Somewhat poorly drained.

Ground water: Some seepage at 65 inches.

Moisture: Very moist; rained 3 inches a few days before sampling.

Permeability: Moderately slow.

Described by: A. R. Hidlebaugh and R. I. Dideriksen; October 16, 1962.

(Colors are for moist soil unless otherwise stated)

Alp 18021 0 to 13 cm (0 to 5 inches). Very dark gray (10YR 3/1) heavy silt loam, gray (10YR 5/1) when dry; actional parting to week medium subangular blocky structure; friable; very few very fine soft dark brown and black accumulations of an oxide; abundant fine roots; clear smooth boundary.

Al2 18022 13 to 23 cm (5 to 9 inches). Very dark gray (10YR 3/1) light silty clay loam, kneaded color is very dark grayish brown; some mixing of dark grayish brown (10YR 4/2) peds which increases with depth; gray (10YR 5/1) when dry; weak very fine subangular blocky and fine granular structure; friable; abundant fine roots; kind, color and size of oxides like horizon above; clear irregular boundary.

A3 18023 23 to 33 cm (9 to 13 inches). Very dark grayish brown (10YR 3/2) medium silty clay loam, grayish brown (10YR 5/2) when dry; about 20 percent mixing of dark grayish brown (10YR 4/2) peda; kneaded color is very dark grayish brown (10YR 3/2) to dark grayish brown (10YR 4/2); some tonguing of very dark gray (10YR 3/1) from above horizon; moderate very fine subangular blocky structure; friable; common thin silt coats on peds; common fine roots; clear smooth boundary.

B1 18024 33 to 43 cm (13 to 17 inches). Dark grayish brown (10YR 4/2) light silty clay; faces of peds dark gray (10YR 4/1) light gray (10YR 6/1 to 7/1 when dry); common fine yellowish brown (10YR 5/4) mottles on faces of peds and common to many fine strong brown (7.5YR 5/6) mottles in peds; moderate very fine subangular blocky structure; friable to firm; few fine roots; few thin silt coats on peds, few very dark gray (10YR 3/1) silty clay loam fills extending from above horizons; few very fine soft dark brown and black accumulations of an oxide; clear smooth boundary.

B22 18025 43 to 53 cm (17 to 21 inches). Dark grayish brown (10YR 4/2) silty clay; faces of peds dark gray (10YR to 2.5Y 4/1) common fine dark yellowish brown (10YR 4/4) mottle on faces of peds and many fine yellowish brown (10YR 5/6) mottles in peds; strong fine subangular blocky structure; firm; distinct thin continuous clay films on all peds, some very dark gray (10YR 3/1) clay coats in fine pores; very few fine roots; very few very fine hard black oxides; clear smooth boundary.

B22 18026 53 to 70 cm (21 to 28 inches). Olive gray (5Y 5/2) silty clay; faces of peds dark gray (5Y 3/1) common fine dark yellowish brown (10YR 4/4) and few fine dark brown (7.5YF 4/4) mottles; firm; strong fine and medium subangular blocky structure; firm; thin discontinuous clay films; common thin silt coats on some pads; few fine inped tubular pores; very few very fine dark brown and black hard concretions of an oxide; gradual smooth boundary.

B23 18027 70 to 85 cm (28 to 34 inches). Olive gray (5Y 5/2) light silty clay; faces of peds gray (5Y 5/1) common fine yellowish brown (10YR 5/4) mottles on faces of peds and many fine strong brown (7.5YR 5/6) mottles in peds; moderate fine and medium subangular blocky structure; firm; few thin discontinuous clay films; common thin silt coats on some peds; few fine inped tubular pores; common fine hard black concretions of an oxide; gradual smooth boundary.

B24 18028 85 to 100 cm (34 to 39 inches). Olive gray (5Y 5/2) heavy silty clay loam; weak medium prismatic structure parting to weak to moderate medium subangular blocky; common fine strong brown (7.5YR 5/6) mottles; firm; few ped faces are gray (5Y 5/1); very few discontinuous clay films and coats in some pores of dark gray color; common fine inped tubular pores; very few very fine hard black concretions of an oxide; clear smooth boundary.

100 to 113 cm (39 to 44 inches). Mixed olive gray (5Y 5/2) and 30 percent strong brown (7.5YR 5/6) medium silty clay loam; weak medium to coarse prismatic structure parting to weak medium and coarse subangular blocky; firm; few thin discontinuous dark gray clay films on prism faces and some clay coats in pores; common fine inped tubular pores; abundant fine and medium soft black accumulations of an oxide; clear wavy boundary.

B32 18030 113 to 128 cm (44 to 50 inches). Olive gray (5Y 5/2) medium silty clay loam; weak coarse primmatic structure parting to weak coarse subangular blocky; diffuse, 1-inch wide, nearly vertical oriented zone of strong brown (7.5YR 5/6) mottles; very few dark gray clay flows in some crevices and very thin discontinuous clay films on a few prism faces; common fine inped tubular pores; very few very fine soft black accumulations of an oxide; diffuse irregular boundary.

B33 18031 128 to 145 cm (50 to 57 inches). Same as the B32 except there are fewer fine mottles; indistinct thin silt coats; pores same as C1; diffuse smooth boundary.

C 18032 145 to 165 cm (57 to 65 inches). Same as the B33 except mottles are brown (7.5YR 4/4) in color; pores same as B32; abrupt wavy boundary.

IIAb? 18033 165 to 178 cm (65 to 70 inches). Dark gray (10YR 4/1) silty clay loam with noticeable sand; abundant fine brown (7.5YR 4/4) and strong brown (7.5YR 5/8) mottles; firm; distinct tonguing of olive gray (5Y 5/2) loess into the paleosol.

Remarks: Consistence at moist field conditions. See description for Seymour, S62-Iowa-93-2, for elevation transect.

P-h----- 1067

| SOIL | Seymour silt loam | <br>SOIL | Nos. | 5621owa-93-6 | LOCATION - | Wayne | County, | Iowa |  |
|------|-------------------|----------|------|--------------|------------|-------|---------|------|--|
|      |                   |          |      |              |            |       |         |      |  |

1AD No. 18025 18065

SOIL SUBVEY LABORATORY. Linnaln. Webmarks

64-70

General Methods: 1A, 1Blb, 2Al, 2B Size class and particle diameter (mm) 3A1 Coarse fragments 2A2 Silt Very Madium Fine Depth Sand Clay Coarse Vary fine Int. III Int IT Henzon 2 - 19 19~ JE (1-0.5) (0 5-0.25) (0 25-0.1) (0.1-0 05) (0.05-0 02) (0 02-0 002) (in) (2-0.05)(0 05-( ≠ 0 002) (2-1)0.002) Pct < 76mm 22.5 3.2 3.6 3.4 3.1 4.Oa 0.9 33·5 30·7 0-7 73.5 0.3 0.7 8.0 40.0 34.6 -70.5 67.6 31.5 31.3 7-11 A12 4.la 25.4 0.7 1.4 0.8 0.7 39.8 0.5 30.2 26.3 24.4 37.4 34.9 11-15 A3 4.2a 28.2 0.6 8.0 0.8 1.3 0.7 15-19 3.9b 61.2 34.9 0.9 0.6 0.8 27.4 0.6 -19-23 B21 2.05 50.5 47.5 0.2 0.4 0.3 0.7 26.1 25.3 1.3 0.4 20.5 23-28 B22 1.60 47.4 51.0 0.2 19.6 27.8  $\mathbf{tr}$ 0.3 0.4 0.7 0.9 21.7 28-36 B23 1.9b 51.9 46.2 0.4 0.6 1.3 0.1 0.3 0.5 \_ 36-45 **1**31 1.90 59.1 39.0 0.2 0.4 0.4 0.4 28.i 31.0 28.8 0.5 1.4 \_ 45-54 54-64 1.8a 2.3a 62.5 66.1 B32 35.7 0.1 0.3 0.3 0.4 0.7 26.6 35·9 39·9 27.5 27.2 0.7 Cl 0.2 0.6 26.2 24.6 64-70 IIAb(7) 7.9 67.5 0.3 1.5 2.7 2.1 26.1 41.4 29.6 1.3 6Ala 6B1a 6E2a 602a Bulk density 4D0. Water content ρH Ext. 4Ala 4Ald 4**Á**1b 4B4 4Blc 422 4C1 8Cla Depth Organic Nitrogen Ç/N Iron Field-1/3 Air-COLE Field 1/3-15~ 1/3-(In.) carbon as CaCO (1 D 8.5 State Bar Dry State Bar minus Bar e Pct Fe 15-Bar H20 Pct Pct Pct. Pct Pet Pct in./in. 2.06 0.172 1.32 1.38 0-7 12 1.0 1.33 0.01 25.6 25.7 10.4 0.20 1.31 7-11 1.46 13 1.2 0.01 27.2 25.5 10.6 5.2 0.19 24.5 24.5 11.-15 0.87 0.082 1.2 1.32 1.40 0.02 25.0 12.0 0.16 5.2 15-19 0.73 0.070 10 1.3 1.36 1.44 0.02 24.4 14.6 0.13 5.2 19-23 0.75 0.067 11 1.3 1.3d 20.4 5.3 23-28 0.62 0.056 1,3 1,29 1,24 1,80 0.12 34.1 35.0 22.6 5.5 28-36 0.32 1.1 1.32 1.25 1.80 0.12 33.0 33.9 31.8 21.4 0.16 5.8 36-45 0.15 1.0 1.45 1.31 1.85 0.11 26.7 18.7 0.17 6.3 1.58 27.9 45-54 0.15 1.0 1,41 1.82 0.08 21.3 16.8 0.16 6.2 54-64 0.07 1.2 1.62 1.47 1.76 0.06 20.6 26.4 14.7 0.17 6.4 6.2 64-70 0.11 1.66 1.56 1.72 0.03 19.4 23,1 9.8 0.21 6HLa Cat.Exch.Cap. 8p3 Base saturation Extractable bases 5Ble. Ent. 5Å3a 5Åla Acidity Sum NEGOAc Cations 6#2a 602a 6P2a 503 501 Depth Ca/Mg Sum NELQAC Sum Cations Mg 3.2 0.1 10.2 | 27.6 20.0 0-7 13.9 0.2 17.4 4.3 63 87 7-11 10.2 3.9 0.1 14.5 11.8 26.3 19.3 2.6 75 78 85 0.3 55 <u>59</u> 65 11-15 4.7 0.2 0.4 15.5 10.6 26.1 19.8 10.2 2.2 15-19 12.9 6.9 0.5 20.6 11.2 31.8 24.1 0.3 18.9 10.8 0.8 31.0 12.9 43.9 19-23 0.5 32.1 1.8 71 97 0.8 35.5 34.5 11.4 46.9 103 23-28 21.3 12.6 0.9 34.3 1.7 28-36 20.6 12.3 6.8 8.2 42.7 32.0 1.7 36-45 18.7 10.8 0.8 0.6 30.9 5.8 36.7 27.5 1.7 84 112 45-54 17.4 10.0 0.7 0.6 28.7 5.0 33.7 1.7 85 112 14.9 8.4 0.7 0.5 24.5 29.6 22.2 83 110 64-70 10.0 5.2 0.5 0.3 16.0 4.2 20.2 15.2 1.9 105 Ratios to Clay 8D1 Fe-Mn nodules: > 50 percent (2-0.1 mm); 5-25 percent (0.1-0.05 mm) Fe-Mn nodules: > 50 percent (2-0.1 mm); 25-50 percent (0.1-0.05 mm). 13 kg/m<sup>2</sup> to 60 inches (Method 6A). Depth NHL OAC Ext. 15-Ber ъ. (ln ) CEC Iron Water Estimated. 0.044 0.46 0-7 0.89 7-11 0.76 0.047 0.42 11-15 0.70 0.043 0.43 15-19 0.69 0.037 0.42 19-23 0.68 0.025 0.44 <u> 23-28</u> 0.67 28-36 0.69 0.026 0.48 36-45 0.71 0.028 0.47 0.038 0.47 0.045 0.40 45-54 54-64 0.72 0.70 0.62

Pedon classification: Aquic Argiudoll; fine, montmorillonitic, mesic.

Series classification: (Same as pedon).

Soil: Seymour silt loam.

Soil no.: S62-Iowa-93-6 (LSL Nos. 18034 - 18044).

Location: Wayne County, Iowa; 342 feet west and 497 feet south of the center of road in the northeast corner of SW  $\frac{1}{4}$  Sec. 3, T. 68 N., R 20 W., about 2 miles south of Promise City.

Vegetation and land use: Oats stubble; cropland.

Parent material: Wisconsin loess.

Slope: About 2 percent.

Physiography: Somewhat stable interfluve summit with slope slightly convex toward the north.

Elevation: 0.00 feet in respect to other sites in Promise City transect.

Drainage: Somewhat poorly drained.

Ground water: None noted.

Moisture: Slightly moist.

Permeability: Moderately slow.

Described by: A. R. Hidlebaugh and R. I. Dideriksen; October 18, 1962.

(Colors are for moist soil unless otherwise stated)

0 to 18 cm (0 to 7 inches). Very dark gray (10YR 3/1) heavy silt loam, gray (10YR 5/1) when dry; very weak thick platy structure parting to weak fine subangular blocky and fine granular; friable; platy structure at contact with horizon below and due to compaction; very few very fine dark brown soft accumulations of an oxide; abundant fine roots; slightly acid (pH 6.2); abrupt smooth boundary.

A12 18035 18 to 28 cm (7 to 11 inches). Very dark gray (10YR 3/1) with some very dark grayish brown (10YR 3/2) heavy silt loam; gray (10YR 5/1 to 6/1) when dry; kneaded color very dark gray (10YR 3/1); weak very fine subangular blocky and weak fine granular structure; friable; few krotovinas; weak platiness between 7 and 8 inches due to compaction; abundant fine roots; common very fine moderately hard dark brown and black concretions of an oxide; medium acid (pH 5.6); clear smooth boundary.

28 to 38 cm (11 to 15 inches). Very dark gray (10YR 3/1) with 20 percent very dark grayish brown (10YR 3/2) medium silty clay loam; 3/2 color increases with depth, kneaded color very dark grayish brown (10YR 3/2); moderate very fine subangular blocky structure: friable: few wormcasts or mixings of dark grayish brown

(10YR 4/2) color, few krotovinas; few thin silt coats peds; abundant fine roots; few very fine soft dark brown and black accumulations of an oxide; clear smooth boundary.

38 to 48 cm (15 to 19 inches). Dark grayish brown (2.5Y 4/2) light silty clay, gray (10YR 6/1) to light brownish gray (10YR 6/2) when dry; few fine olive brown (2.5Y 4/4) mottles; moderate very fine subangular blocky structure; friable to firm; few thin silt coats on peds; few fine dark brown and black concretiona of an oxide; common fine roots; medium acid (pH 5.8); clear smooth boundary.

B21 18038 48 to 58 cm (19 to 23 inches). Dark grayish brown (10YR 4/2) silty clay; faces of peds are dark gray (10YR 4/1); common fine dark yellowish brown (10YR 4/4) mottles on faces and many distinct yellowish brown (10YR 5/4) mottles in peds; strong very fine subangular blocky structure; firm; thin discontinuous clay films; few silt coats on some peds; krotovina (1 by 3 inches) filled with very dark gray silty clay loam at side of pit; few fine roots; common very fine soft dark brown and black accumulations of an oxide; medium acid (pH 6.0); clear smooth boundary.

B22 18039 58 to 70 cm (23 to 28 inches). Very dark gray (10YR 3/1) silty clay; strong very fine angular and subangular blocky structure; few fine brown (10YR 4/3) mottles on the faces of peds and many fine yellowish brown (10YR 5/4 to 5/6) mottles in peds; firm; thin continuous clay films; few fine inped tubular pores; some large oblique pressure faces; few fine roots; common fine moderately hard black concretions of an oxide; few very fine roots; clear smooth boundary.

B23 18040 70 to 90 cm (28 to 36 inches). Dark gray (10YR 4/1), dark grayish brown (10YR 4/2), and grayish brown (2.5Y 5/2) light silty clay; faces of peds are dark gray (10YR 4/1) and dark grayish brown (10YR 4/2) with common fine yellowish brown (10YR 5/4) mottles, and interiors of peds are grayish brown (2.5Y 5/2) with common to many fine yellowish brown (10YR 5/6) to strong brown (7.5YR 5/8) mottles; weak medium prismatic structure parting to moderate fine and medium subangular blocky; firm; thin discontinuous clay films and some very dark gray clay coats in a few pores; some oblique pressure faces; very few thin silt coats; few fine inped tubular pores; less oxides than above horizon; slightly acid (pH 6.5); clear irregular boundary.

B31 18041 90 to 115 cm (36 to 45 inches). Olive gray (5Y 5/2) with some dark gray (2.5Y 4/1) heavy silty clay losm; common medium to fine yellowish brown (10YR 5/6) mottles; moderate medium prismatic structure parting to moderate medium subangular blocky; firm; very thin discontinuous clay films on prism faces and as coats in a few pores; oxides same as B22; few thin silt coats on some peds; common fine inped tubular pores; some oblique pressure faces; neutral (pH 6.7); gradual smooth boundary.

B32 18042 115 to 138 cm (45 to 54 inches). Same color, texture, and structure as the B31 horizon; common to many fine and medium strong brown (7.5YR 5/6) mottles; firm; few very dark gray clay coats in pores and dark gray clay films on some vertical faces; several 1-inch clay ball accumulations; some oblique pressure faces; common fine inped tubular pores; neutral (pH 6.7); gradual smooth boundary.

B33 18043 138 to 163 cm (54 to 64 inches). Same color as the B22 horizon; medium silty clay loam; few to common fine yellowish brown (10YR 5/6) to strong brown (7.5YR 5/6) mottles; very weak coarse prismatic structure parting to very weak coarse angular blocky; firm; very dark gray clay coats in a few pores; several 12-inch clay ball accumulations; common fine inped tubular pores; abrupt wavy boundary.

IIAb? 18044 163 to 178 cm (64 to 70 inches). Dark gray (10YR 4/1) medium silty clay loam with noticeable sand; many medium yellowish brown (10YR 5/6) mottles; firm; quartz grains visible; paleosol; very few dark gray clay flows from loess into paleosol on vertical channels.

Remarks: Consistence at moist field conditions. See description for Seymour, S62Iowa-93-4, for elevation transect.

|                    |             |           | FINE         | -\$1 <b>L</b> TY | ARGIAL<br>, MIXE | D. MES       | IC               | •             |             |             |          |                  |                                                   | 5             | OIF CD              | NSERVA       | ENT OF                 | RV ICE       | MRTS        |
|--------------------|-------------|-----------|--------------|------------------|------------------|--------------|------------------|---------------|-------------|-------------|----------|------------------|---------------------------------------------------|---------------|---------------------|--------------|------------------------|--------------|-------------|
| SERIES.            |             |           |              |                  | <u> </u>         |              |                  |               |             |             |          |                  |                                                   | L             | INCOLN              | , NEBR       | <u>nvestii</u><br>Aska | SATION:      | S UNL       |
| SOIL NO            |             | +         | - 5711       | OWA-93           | <del>-3</del>    | COUNTY       | <del></del> -    | MAYN          | <u> </u>    |             |          | _                |                                                   |               |                     |              |                        |              |             |
| GENERAL            | . METHC     | DS        | ~1 A. 1      | B18,2A           | 1,28             |              |                  | SAMPI         | E NOS-      | 71L11       | 156-714  | 1163             |                                                   |               |                     |              |                        |              | _           |
| DEPTH              | HORI        | 70M       |              |                  |                  |              | 1                |               | E 5176      | E ANALY     | /E T E   | T 288            | 341.                                              | 2414          | 2410                |              |                        |              | DATI        |
| UEFIN              | nuki        | LUM       | ,            |                  | _                | FINE         | (                |               | SAND -      |             | )        | ) <del>(</del> - | <u> -SILT                                    </u> |               | ) FAML              | INTR         | FINE                   | NON-         | 801         |
|                    |             |           | SAND         |                  |                  |              | vcos.            | CORS          |             | FNES        | VFNS     | COSI             | FNS1                                              |               | TEXT                |              |                        | CD3-         |             |
|                    |             |           | <u></u>      | .05-             |                  | -000         | <u>2-</u><br>2 1 | 1-<br>•5      | .5-<br>.25  | •25-<br>•10 | .10-     | .05              | .02                                               | .005          | - <u>SAND</u><br>21 | .02          | CLAY                   | CLAY         | BAR         |
| CM                 |             |           | 1            |                  |                  |              |                  | <u></u>       | - PC1       | T LT 21     | <u> </u> |                  |                                                   |               |                     |              |                        | PCT          | CLAY        |
| 000-20             | AP          |           | 4.64         | 66-6             | 29.0             | 17.8         | -0               |               | .5          | 1.7         | 2.2      | 20.3             | 46.1                                              | 6,4           | 2.4                 | 23.4         | 61                     |              |             |
| 020-30             | ALZ         |           | 5.5A         | 66.1             | 28.4             | 16.5         |                  | - 3           | •6          | 2.1         | 2.4      | 21.0             | 45.1                                              | 6.8           | 3.1                 | 24.6         | 58                     |              | - 41        |
| 030-51             | A21         |           | 8.1A         | 66.1             |                  |              | -2<br>-4         | 1.2           | 1.4         | 3.2<br>4.0  | 3.6      | 21.0             |                                                   | 6.7<br>5.5    | 7.0                 | 25.7<br>26.8 | 54<br>58               |              | .4          |
| 079-94             | B21         |           | 9.84         |                  |                  |              |                  | - 3           | 1.7         | 4.5         | 3.8      | 18.4             |                                                   |               |                     |              | 67                     |              |             |
| 094-117            | B22         | TG        | 12-0A        | 53.2             | 34.8             | 24.2         |                  | .2            | 1.4         | 6.0         | 4.4      | 18.6             | 34.6                                              | 4.3           | 7.6                 | 26.3<br>31.1 | 70                     |              | -4          |
| 117-152<br>152-183 |             |           | 21.94        | 48.1             | 30.0<br>27.7     | 19.9<br>17.7 | TR               | .3            | 3.2         | 17.5        | 7.7      | 16.8<br>16.0     |                                                   | 2.7           | 21.0                |              | 64                     |              | . 4:        |
|                    |             |           |              |                  |                  |              |                  |               |             |             | <i>_</i> |                  |                                                   |               |                     |              |                        |              |             |
| DEPTH              | (PART)      | CLE S     | IZE AN       | WLASTE           | FORT -           | 3B. 38       | 1. 3821<br>      | ) ( BUI       | K DEN       | 11Y 1       | 481C     |                  | <u>er co</u><br>482                               | HTENT-<br>4C1 |                     |              | ONATE<br>3 A1 A        | (P)          |             |
|                    | GT_         | GT        | 75-2         | 0 20-5           | 5-2              | LT_          | 20-2             | 1/3-          | OAEN        | COFE        | 1/10     | 1/3-             | 15-                                               | WRD           |                     | LY           | LT                     | 1/1          | 1/2         |
|                    | 2           | 75        |              |                  |                  | .074         | PCT              | BAR           | DRY         |             | BAR      | BAR              | BAR                                               | CM/           |                     | 2            | -002                   | H2O          | CACI        |
| CM                 | PÇT         | PCT       | {- <i>-</i>  | <u> - PCT</u>    | LT 75            |              | LT20             | G/CC          | 6/00        |             | PCT      | PCT              | PCT                                               | CM            |                     | PĘT          | PC T                   | ~~~~         |             |
| 000-20             | 0           | . 0       | 0            | 0.               | 0                | 97           | <u>Q</u>         | 1.34          | 1.50        | .038        | 29.1     | 26.7             | 13.0                                              |               | 2.30                |              |                        | 5.7          | 5.5         |
| 020-30<br>030-51   | 0           | 0         | 0            | 0                | 0                | 96<br>94     | 0                | 1.35<br>1.40B | 1.50        | .036        | 31.3     | 29.2             | 13.5                                              | .21           | 3.3C                |              |                        | 5.6<br>5.2   | 5. i        |
| 051-79             | 0           | 0         | ō            | <u>ō</u> -       | 0                | 92           | 0                | 1.45          | 1.55        | .023        | 28 - 2   | 26.3             | 11.8                                              | .21           | 2.80                |              |                        | 5.0          | 4 - !       |
| 079-94             | - 0         | 0         | 0            | 0                | 0                | 93           | 0                | 1.50          | 1.74        | .064        | 28-1     | 26.5             | 16.7                                              | 16            | 2.30                |              |                        | 5.3          | 4-1         |
| 117-152            |             | ŏ         | ŏ            | ŏ                | ŏ                | 91<br>83     | ŏ                | 1.46          |             |             |          |                  | 13.9                                              |               |                     |              |                        | 5.6          | 5.0         |
| 152-183            | 0           | 0         |              |                  | 0                | 74           | ₽                | 1.63          | 1.83        | -039        | 21.3     | 19.5             | 12.4                                              | -12           | 2.6C                |              |                        | 5.8          | 5.          |
|                    |             |           |              |                  |                  |              |                  |               |             |             |          |                  | 404                                               |               |                     |              | CA                     |              | - 47        |
| DEPTH (            | GALA        | 6BIA      | TER )        | IRON<br>6C2A     | 651A             | 6N2Ê         | XTRACTA<br>602D  | 6P2A          | 602A        |             | 6HIA     | AL<br>6G1D       | 5A3A                                              | 5A6A          | RAT10               | 803          | 56                     | 1BASE<br>5C3 | 561         |
|                    | ORGN        | NITG      |              | EXT              | TOTL             | CA           | MG               | NA_           | K           | SUM<br>EXTB | BACL     | KCL              | EXTB                                              | NHAC          | MHAC<br>TO          | TO           | S AT                   | ACTY         | NHAI        |
| CM                 | PCT         | PCT       |              | FE<br>PCT        | PCT              | (            |                  |               | MEG         |             | TEA<br>G | EXT              |                                                   |               | ) CLAY              | MG           | PCT                    | PCT          | PCT         |
|                    |             |           |              |                  |                  |              |                  |               |             |             |          |                  | 30 7                                              | 26.7          | -92                 | 4.9          | 71                     | 76           | 8           |
| 000-20             | 1.79        | -152      | -11<br>-11   | . 8              |                  | 17.0         | 3.9              | - :1          | .3          | 23.3        | 7.4      |                  | 31.0                                              | 26.6          | .94                 | 4.4          | 64                     | 69           | 81          |
| 030-51             | 1.38        | -110      | 13           | . 9              |                  | 12.7         | 3.3              | 1             | <u>.2</u> . | 16.3        | 11-1     | • <u>i</u>       | 27.4                                              |               |                     | 3.9          | 56                     | . 59         | 77<br>61    |
| 051-79             | . 72        | .060      |              |                  |                  | 10.4         |                  | .2<br>.4      | .2          | 20.7        | 9.9      | .4               |                                                   | 20.8          |                     | 2.9<br>2.7   | 50°                    | 59<br>67     | 7           |
| 094-117            | - 66        |           |              | .8               |                  | 15.2         | 5.9              | - 3           | .5          | 22.1        | 8.8      | -1               | 30.9                                              | 27.3          | -78                 | 2.6          | 56                     | 72           | 8           |
| 117-152            | . 53        |           |              | .8               |                  | 14.1         | 5.4<br>4.9       | -4            | -4          | 20.3        | 4.4      |                  | - <del>26.6</del><br>22.8                         |               |                     |              | 60                     | 76<br>81     | 91          |
| 192-103            |             |           |              |                  |                  |              | 7.7              |               |             |             |          |                  |                                                   |               | •••                 |              |                        | ٠.           |             |
| DEPTH              | ( SATUR     | ATED      |              | NA_              | NA               | SALT         |                  |               |             |             | SATURA   | TION             | EXTRAC                                            | F 8A1-        |                     |              | )                      | ATTER        | ERG         |
|                    | BE1<br>REST | 8CIE      | 8A<br>H2O    | 502<br>ESP       | 5E<br>SAR        | 805<br>TOTA  | 6FlA             | BAIA          | 6N1B<br>CA  | 6018<br>MG  | 6PIA     | 6QIA             | 611A<br>CO3                                       | HCD3          | 6K/LA               | 61.1A<br>504 | 6M1A<br>ND3            | 4F1<br>LQID  | 4F2<br>PLST |
| -                  | OHM-        | - 11      |              | •                | 3-10             | SÕLÜ         |                  | MHOS/         | -           |             |          |                  |                                                   |               |                     |              |                        | LATT         |             |
| CM                 | <u> </u>    |           | P <u>C</u> T | PCT              |                  | _PPM         | PCT              | CH (          |             |             |          | ME9 .            | / LITE                                            |               |                     |              | <u> </u>               | PCT          |             |
| 000-20             |             |           |              |                  |                  |              |                  |               |             |             | _        |                  |                                                   |               |                     |              |                        | 438          | - 10        |
| 020-30             |             |           |              |                  |                  |              |                  |               |             |             |          |                  |                                                   |               |                     |              |                        | 42E          | 16          |
| 051-79             |             |           |              |                  |                  |              |                  |               |             |             |          |                  |                                                   |               |                     |              |                        |              |             |
| 079-94             | 2000        | - <u></u> | 53.4         |                  |                  |              |                  | - ,22         |             |             |          |                  |                                                   |               |                     |              |                        | .47 <u>E</u> | 24          |
| 117-152            |             |           |              |                  |                  |              |                  |               |             |             |          |                  |                                                   |               |                     |              |                        | 40 E         |             |
| CLAY MI            |             | GY 17     | A2E1-        |                  | PI AC            | EMENT        | (S711A-          | -93-31        | - MON1      | MORILI      | ONITIC   |                  |                                                   |               |                     |              |                        |              |             |
| 000-20             | MT3         | KKZ       | MIZ_         | 021              | COMM             | ENTS -       | SMECTI           | ITE CRY       | STALL       | NITY (      | ECREAS   | ES IN            | SURFA                                             | E HOR         | 120N.               | MICA         | INCRE AS               | ES SOI       | 1E          |
| 030-51             | MT5         | KK3       | M12          | 921<br>933       |                  |              | WITH C           | DEPTH.        | KAGL        | NITE A      | IEAR SM  | IALL -           | HODER                                             | ATE BO        | KUER (              | F21 TO       | -15 PCT                | J.           |             |
| - <u>M-74-33</u>   |             |           |              |                  |                  |              |                  |               |             |             |          |                  |                                                   |               |                     |              |                        |              |             |
|                    |             |           |              |                  |                  |              |                  |               |             |             |          |                  |                                                   |               |                     |              |                        |              |             |
|                    |             |           |              |                  |                  |              |                  |               |             |             |          |                  |                                                   |               |                     |              |                        |              |             |
|                    |             |           |              |                  | Mur -            |              |                  |               | 44. ***     |             |          |                  |                                                   |               |                     |              |                        |              |             |

VIII TO TO THE RESERVE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P

Pedon classification: Argiaguic Argialboll; fine-silty, mixed, mesic.

Series classification: (Same as pedon). Soil: Vesser silt loam,

Soil no.: \$71-Iowa-93-3 (LSL Nos. 71L1156 - 71L1163) .

Location: Wayne County, Iowa, 655 feet west and 935 feet south of the northeast corner of the SE% sec. 5, T. 69 N., R. 21 W., or 150 feet south and 25 feet west of the old bridge into field.

Vegetation and land use: Recently harvested corn; cropland. Parent material: Silty alluvium that has less than 15 percent sand.

Physiography: On a nearly level bottom land about 50 feet west of bank of the straightened channel of the south fork of the Chariton River.

Réliéf: Plane to slightly convex.

Slope: Less than 1 percent.

Drainage: Somewhat poorly or poorly drained.

Erosion: None.

Ground water: None within 6 feet (seasonal rainfall below normal) .

Permeability: Moderate in the upper part and moderately slow in the lower part. Described by: J. D. Highland, L. D. Lockridge, and J. D. Worster, October 1971.

(Colors are for moist soil unless otherwise stated)

Ap 71L1156 0 to 20 cm (0 to 8 inches). Very dark gray (10YR 3/1) silt loam, dark gray (10YR 4/1) dry; moderate fine subangular blocky structure parting to moderate fine granular; friable; between 7 and 8 inches zone is more compacted than above or below (plow sole); slightly acid (pH 6.5); abrupt wavy boundary.

A12 71L1157 20 to 30 cm (8 to 12 inches). Very dark gray (10YR 3/1) heavy silt loam, dark gray (10YR 4/1) to gray (10YR 5/1) dry; weak medium platy structure parting to moderate fine granular; friable; few fine dark brown oxides: common fine pores: medium acid (pH 6.0); clear wavy boundary.

20 to 51 cm (12 to 20 inches). Very dark gray (10YR 3/1) and dark gray (10YR 4/1) silt loam, dark gray (10YR 4/1) kneaded; light gray (10YR 6/1) dry; few fine distinct dark brown (7.5YR 3/2) mottles; weak coarse platy structure parting to weak very fine subangular blocky; friable; thin discontinuous light gray (10YR 6/1) silt coatings on peds; common fine dark brown to brown oxide concretions; strongly acid (pH 5.4); gradual wavy boundary.

A22 71L1159 51 to 79 cm (20 to 31 inches). Dark gray (10YR 4/1) silt loam, grayish brown (10YR 5/2) coatings on peds, dark grayish brown (10YR 4/2) kneaded; few fine distinct dark brown (7.5YR 3/2) mottles; weak coarse plats structure parting to weak fine subangular blocky; friable; many fine tubular pores; few fine reddish brown and black oxide concretions; nearly continuous light gray (10YR 7/1) silt coatings on peds; strongly acid (pH 5.4); clear wavy boundary.

B21tg 71L1160 79 to 94 cm (31 to 37 inches). Very dark gray (10YR 3/1) silty clay loam, dark gray (10YR 4/1) coatings on peds; common fine distinct dark brown (7.5YR 3/2) mottles; moderate medium prismatic structure parting to moderate medium subangular blocky; firm; light gray (10YR 7/1 dry) silt and fine sand coatings on faces of some peds; some faces of prisms have thick patchy light gray (10YR 7/1 dry) silt and fine sand coatings; black (10YR 2/1) clay accumulations in some root channels; common dark brown accumulations (oxides) and hard concretions; strongly acid (pH 5.4); gradual smooth boundary.

B22tg 71L1161 94 to 117 cm (37 to 46 inches). Dark gray (10YR 4/1) medium silty clay loam; moderate medium prismatic structure parting to weak moderate medium subangular blocky; firm; common thin patchy very dark gray (10YR 3/1) clay films; common black (N 2/) clay filled pores; few thick patchy light gray (10YR 7/1 dry) silt and fine sand coatings on some prisms; few dark brown and black accumulations (oxides) and hard concretions; medium acid (pH 5.8); gradual smooth boundary.

B31tg 71L1162 117 to 152 cm (46 to 60 inches). Dark gray (10YR 4/1) medium silty clay loam, very dark gray (10YR

dry) silt and fine sand coatings on some peds; few patchy black clay films; slightly acid (pH 6.4); gradual smooth boundary.

B32tg 71L1163 152 to 183 cm (60 to 72 inches). Dark grayish brown (2.5Y 4/2) light silty clay loam high in fine sand, very dark gray (10YR 3/1) coatings on some peds; common fine faint olive brown (2.5Y 4/4) mottles; weak coarse prismatic structure; friable; few thin patchy light gray (10YR 7/1 dry) silt and fine sand coatings on some prisms; few black (N 2/) clay filled pores and thick films on prisms; krotovinas 1 to 2 inches in diameter filled with black (N 2/) clayey material; few fine dark brown oxides; slightly acid (pH 6.4).

SOIL CLASSIFICATION-TYPIC HAPLUDDLL
FINE-LOAMY OVER SANDY OR SANDY-SKELETAL, MIXED, MESIC
SERIES - - - - - - WADENA LOAM

SOIL NO - - - - - 5591A-21-1

COUNTY - - - CLAY

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE PAISC SOIL SURVEY INVESTIGATIONS UNIT LINCOLN, NEBRASKA

| GENERAL METHODS14.1814.241.28 | SAMPLE NOS. 11121-11127 |
|-------------------------------|-------------------------|

| DEPTH                                                                                | HORI                                                                                 | ZON                                                                                   | (                                              |                                                                     |                                                                 |                                                |                                                                                                     |                                                |                                                        |                                                                             |                                                                       |                                                                                         |                                               | , 3A1,<br>-SILT-                                                               |                                                                             |                                                                                       |                                                                          |                                                                    |                                                                                                    |                                                                                                                                             |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                      |                                                                                      |                                                                                       | FAA                                            |                                                                     |                                                                 |                                                |                                                                                                     |                                                |                                                        |                                                                             |                                                                       |                                                                                         |                                               | FNSI                                                                           |                                                                             |                                                                                       |                                                                          |                                                                    |                                                                                                    |                                                                                                                                             |
|                                                                                      |                                                                                      |                                                                                       |                                                |                                                                     |                                                                 |                                                |                                                                                                     |                                                |                                                        |                                                                             |                                                                       |                                                                                         |                                               | -02                                                                            | • 005·                                                                      | - SAND                                                                                | .2-                                                                      | ĽŰ                                                                 | CLAY                                                                                               |                                                                                                                                             |
|                                                                                      |                                                                                      |                                                                                       | .0                                             | 5.                                                                  | 002                                                             | -002                                           | -000                                                                                                | 21                                             | -5                                                     | . 25                                                                        | .10                                                                   | - 05                                                                                    | • O2                                          | .002                                                                           | .002                                                                        | 21                                                                                    | .02                                                                      | CLAY                                                               |                                                                                                    | 70                                                                                                                                          |
| CM                                                                                   |                                                                                      |                                                                                       | (                                              |                                                                     |                                                                 |                                                |                                                                                                     |                                                | :                                                      | PC1                                                                         | LT 21                                                                 | 44                                                                                      |                                               |                                                                                |                                                                             |                                                                                       |                                                                          | PCT                                                                | PCT                                                                                                | CLAY                                                                                                                                        |
| 00-20                                                                                | ALP                                                                                  |                                                                                       |                                                |                                                                     |                                                                 |                                                |                                                                                                     |                                                |                                                        |                                                                             |                                                                       |                                                                                         |                                               |                                                                                |                                                                             |                                                                                       |                                                                          |                                                                    |                                                                                                    | -43                                                                                                                                         |
| 20-28                                                                                | 43                                                                                   |                                                                                       | 33.                                            | Z 4                                                                 | 2.9                                                             | 23.9                                           |                                                                                                     | 2.9                                            | 10.6                                                   | 9.7                                                                         | 8.0                                                                   | 2.0                                                                                     |                                               | 24.1                                                                           |                                                                             | 31.2                                                                                  | 23.5                                                                     |                                                                    |                                                                                                    | . 4                                                                                                                                         |
| 28-38                                                                                | 81                                                                                   |                                                                                       | 27.                                            | , ,                                                                 | 9.5                                                             | 20-1                                           |                                                                                                     | 4 7                                            | 6.0                                                    | 10.0                                                                        | 10.6                                                                  | 2.6                                                                                     |                                               | 20.1                                                                           |                                                                             | 20.0                                                                                  | 27.4                                                                     |                                                                    |                                                                                                    | . 41                                                                                                                                        |
| 38-56<br>356-66                                                                      | 821                                                                                  | 22                                                                                    | 72.                                            | , ,                                                                 | 1.7                                                             | 14.4                                           |                                                                                                     | 7.4                                            | 17.3                                                   | 23.2                                                                        | 23.2                                                                  | 2.8                                                                                     |                                               | 7.1                                                                            |                                                                             | 71 - 1                                                                                | 14.0                                                                     |                                                                    |                                                                                                    | .4                                                                                                                                          |
| 066-89                                                                               |                                                                                      | 22                                                                                    | 89.                                            | ď.                                                                  | 4.8                                                             | 6.2                                            |                                                                                                     | 11.6                                           | 26.5                                                   | 27.3                                                                        | 22.0                                                                  | 1.6                                                                                     |                                               | 2.5                                                                            |                                                                             | 87.4                                                                                  | 9.0                                                                      |                                                                    |                                                                                                    | .4                                                                                                                                          |
| 089-140                                                                              |                                                                                      |                                                                                       | 94.                                            | 4                                                                   | 3.8                                                             | 1.8                                            |                                                                                                     | 21.9                                           | 30.2                                                   | 29.4                                                                        | 11-7                                                                  | 1.2                                                                                     |                                               | 20.3<br>24.1<br>26.7<br>21.5<br>7.1<br>2.5<br>1.7                              |                                                                             | 93.2                                                                                  | 6.1                                                                      |                                                                    |                                                                                                    | .5                                                                                                                                          |
| <br>EPTH                                                                             | ( DART!                                                                              | CLES                                                                                  | 175 A                                          |                                                                     | <br>SIS                                                         |                                                | 30. 39                                                                                              | . 382                                          | 16 RU                                                  | K DENS                                                                      |                                                                       | (                                                                                       |                                               | FR COM                                                                         | TENT-                                                                       | 2000<br>2004 - 21                                                                     | CARBO                                                                    | NATE                                                               | TP1                                                                                                | f - +                                                                                                                                       |
|                                                                                      | VUL.                                                                                 | (                                                                                     |                                                |                                                                     | WE                                                              | IGHT -                                         |                                                                                                     |                                                | J 4AIC                                                 | 4AIH                                                                        | 4D1                                                                   | 483                                                                                     | 4610                                          | 482                                                                            | 4C1                                                                         |                                                                                       | 6E 1.A                                                                   | 3A1A                                                               | 8C 1 A                                                                                             | 8C 1                                                                                                                                        |
|                                                                                      | GŤ                                                                                   | GT                                                                                    | 75-                                            | 20 2                                                                | 0-5                                                             | 5-2                                            | LT                                                                                                  | 20-2                                           | 1/3-                                                   | OVEN                                                                        | COLE                                                                  | 1/10                                                                                    | 1/3-                                          | 15-                                                                            | WRD                                                                         |                                                                                       | LT                                                                       | LT                                                                 | 1/1                                                                                                | 1/2                                                                                                                                         |
| CH                                                                                   | 2<br>PCT                                                                             | 75<br>PCT                                                                             | (                                              | - P                                                                 | CT Į                                                            | LT 75                                          |                                                                                                     | PCT<br>) LT20                                  | BAR<br>G/CC                                            | G/CC                                                                        |                                                                       | B A R<br>PC T                                                                           | BAR<br>PCT                                    | 482<br>15-<br>8AR<br>PCT                                                       | CM/<br>CM                                                                   |                                                                                       | 2<br>PCT                                                                 | -002<br>PCT                                                        | H20                                                                                                | CAC                                                                                                                                         |
| 00=20                                                                                |                                                                                      |                                                                                       |                                                |                                                                     |                                                                 |                                                |                                                                                                     | TR                                             | 1.30A                                                  |                                                                             |                                                                       |                                                                                         |                                               | 9.3<br>10.8                                                                    |                                                                             |                                                                                       |                                                                          |                                                                    | 5.8                                                                                                |                                                                                                                                             |
| 20-28                                                                                |                                                                                      |                                                                                       |                                                |                                                                     |                                                                 |                                                |                                                                                                     | TR                                             | 1.35                                                   | 1.44                                                                        | .020                                                                  |                                                                                         | 26                                            | 10.8                                                                           | .21                                                                         |                                                                                       |                                                                          |                                                                    | 6.0                                                                                                |                                                                                                                                             |
| 28-38                                                                                |                                                                                      |                                                                                       |                                                |                                                                     |                                                                 |                                                |                                                                                                     |                                                | 1.40A                                                  |                                                                             |                                                                       |                                                                                         |                                               | 10.4                                                                           |                                                                             |                                                                                       |                                                                          |                                                                    | 6.0                                                                                                |                                                                                                                                             |
| 38-56                                                                                |                                                                                      |                                                                                       |                                                |                                                                     |                                                                 |                                                |                                                                                                     |                                                | 1.39                                                   | 1.49                                                                        | +024                                                                  |                                                                                         | 21                                            | 10.8<br>10.4<br>10.1<br>6.2<br>2.6                                             | .15                                                                         |                                                                                       |                                                                          |                                                                    | 6.3                                                                                                |                                                                                                                                             |
| 56-66                                                                                |                                                                                      |                                                                                       |                                                |                                                                     |                                                                 |                                                |                                                                                                     |                                                | 1.65                                                   | 1.70                                                                        | -010                                                                  |                                                                                         | . 9                                           | 2.4                                                                            | - 05                                                                        |                                                                                       | TO                                                                       |                                                                    | 6.6<br>7.4                                                                                         |                                                                                                                                             |
| 066-89<br>089-140                                                                    |                                                                                      |                                                                                       |                                                |                                                                     |                                                                 |                                                |                                                                                                     |                                                | 1.004                                                  |                                                                             |                                                                       |                                                                                         |                                               | 2.0                                                                            |                                                                             |                                                                                       | 12                                                                       |                                                                    | 8.6                                                                                                |                                                                                                                                             |
|                                                                                      | ORGANI                                                                               | C MAT                                                                                 | TER                                            | ) IR                                                                | DΝ                                                              | PHOS                                           | (E)                                                                                                 | CTR ACT                                        | ABLE B                                                 | ASES 56                                                                     | 34A                                                                   | ACTY                                                                                    | AL                                            | (CAT                                                                           | EXCH)                                                                       | RATIO                                                                                 | RATIO                                                                    | CA                                                                 | (BASE                                                                                              |                                                                                                                                             |
| <br>ЭЕРТН (                                                                          | ORGANI<br>GALA<br>ORGN<br>CARB<br>PCT                                                | C MAT<br>681A<br>NITG                                                                 | TER<br>C/                                      | ) IR<br>N 6<br>E<br>F                                               | ON<br>C1 A<br>XT<br>E<br>CT                                     | PHOS<br>651A<br>TOTL<br>PCT                    | (E)<br>6N2B<br>CA                                                                                   | CTRACT<br>602E<br>MG                           | ABLE B                                                 | ASES 56<br>602A<br>K                                                        | SUM<br>EXTB                                                           | ACTY<br>6H1A<br>BACL<br>TEA<br>) G-                                                     | AL<br>6G 10<br>KCL<br>EXT                     | CAT<br>SABA<br>EXTB<br>ACTY                                                    | EXCH)<br>SA1A<br>NHAC                                                       | RATIO<br>BD1<br>NHAC<br>TU                                                            | RATIO<br>803<br>CA<br>TU<br>MG                                           | CA<br>5F<br>SAT<br>NHAC<br>PCT                                     | (BASE<br>5G3<br>EXTB<br>ACTY<br>PCT                                                                | 5C1<br>NHAI                                                                                                                                 |
| CM                                                                                   | ORGANI<br>6A1A<br>ORGN<br>CARB<br>PCT                                                | C MAT<br>6B1A<br>NITG<br>PCT                                                          | TER C/                                         | ) IR<br>N 6<br>F<br>P                                               | ON<br>C1 A<br>XT<br>E<br>CT                                     | PHOS<br>651A<br>TOTL<br>PCT                    | (E)<br>6N2B<br>CA                                                                                   | CTRACT<br>602E<br>MG                           | ABLE B                                                 | ASES 56<br>602A<br>K                                                        | SUM<br>EXTB                                                           | ACTY<br>6H1A<br>BACL<br>TEA<br>) G-                                                     | AL<br>6G 10<br>KCL<br>EXT                     | CAT<br>SABA<br>EXTB<br>ACTY                                                    | EXCH)<br>SA1A<br>NHAC                                                       | RATIO<br>BD1<br>NHAC<br>TU                                                            | RATIO<br>803<br>CA<br>TU<br>MG                                           | CA<br>5F<br>SAT<br>NHAC<br>PCT                                     | (BASE<br>5G3<br>EXTB<br>ACTY<br>PCT                                                                | 5C1<br>NHAI<br>PCT                                                                                                                          |
| CM<br>000-20                                                                         | ORGANI<br>6A1A<br>ORGN<br>CARB<br>PCT<br>2.57E<br>1.81                               | C MAT<br>681A<br>NITG<br>PCT<br>PCT<br>-21                                            | TER<br>C/<br>                                  | ) IR<br>N 6<br>F<br>P                                               | ON<br>C1 A<br>XT<br>E<br>CT                                     | PHOS<br>651A<br>TOTL<br>PCT                    | (E)<br>6N2B<br>CA                                                                                   | CTRACT<br>602E<br>MG                           | ABLE B                                                 | ASES 56<br>602A<br>K                                                        | SUM<br>EXTB                                                           | ACTY<br>6H1A<br>BACL<br>TEA<br>) G-                                                     | AL<br>6G 10<br>KCL<br>EXT                     | CAT<br>SABA<br>EXTB<br>ACTY                                                    | EXCH)<br>SA1A<br>NHAC                                                       | RATIO<br>BD1<br>NHAC<br>TU                                                            | RATIO<br>803<br>CA<br>TU<br>MG                                           | CA<br>5F<br>SAT<br>NHAC<br>PCT<br>59                               | (BASE<br>5C3<br>EXTB<br>ACTY<br>PCT<br>61<br>67                                                    | 5C1<br>NHA<br>PCT<br>7                                                                                                                      |
| CM<br>000-20<br>020-28                                                               | ORGANI<br>6A1A<br>ORGN<br>CARB<br>PCT<br>2.57E<br>1.81                               | C MAT<br>681A<br>NITG<br>PCT<br>-21<br>-16                                            | TER<br>C/<br>                                  | ) IR<br>N 6<br>F<br>P<br>2                                          | ON<br>C1 A<br>XT<br>E<br>CT                                     | PHOS<br>651A<br>TOTL<br>PCT                    | (E)<br>6N2B<br>CA                                                                                   | CTRACT<br>602E<br>MG                           | ABLE B                                                 | ASES 56<br>602A<br>K                                                        | SUM<br>EXTB                                                           | ACTY<br>6H1A<br>BACL<br>TEA<br>) G-                                                     | AL<br>6G 10<br>KCL<br>EXT                     | CAT<br>SABA<br>EXTB<br>ACTY                                                    | EXCH)<br>SA1A<br>NHAC                                                       | RATIO<br>BD1<br>NHAC<br>TU                                                            | RATIO<br>803<br>CA<br>TU<br>MG                                           | CA<br>5F<br>SAT<br>NHAC<br>PCT<br>59<br>65                         | (BASE<br>5C3<br>EXTB<br>ACTY<br>PCT<br>61<br>67<br>70                                              | 5C1<br>NHA<br>PCT<br>7<br>8                                                                                                                 |
| CM<br>000-20<br>020-28<br>028-38                                                     | ORGANI<br>6A1A<br>ORGN<br>CARB<br>PCT<br>2.57E<br>1.81<br>1.30                       | C MAT<br>681A<br>NITG<br>PCT<br>-21<br>-16                                            | TER C/                                         | ) IR<br>N 6<br>F<br>P<br>2<br>I 1<br>O 1<br>O 1                     | ON<br>C1 A<br>XT<br>E<br>CT                                     | PHOS<br>651A<br>TOTL<br>PCT                    | (E)<br>6N2B<br>CA                                                                                   | CTRACT<br>602E<br>MG                           | ABLE B                                                 | ASES 56<br>602A<br>K                                                        | SUM<br>EXTB                                                           | ACTY<br>6H1A<br>BACL<br>TEA<br>) G-                                                     | AL<br>6G 10<br>KCL<br>EXT                     | CAT<br>SABA<br>EXTB<br>ACTY                                                    | EXCH)<br>SA1A<br>NHAC                                                       | RATIO<br>BD1<br>NHAC<br>TU                                                            | RATIO<br>803<br>CA<br>TU<br>MG                                           | CA<br>5F<br>SAT<br>NHAC<br>PCT<br>59<br>65                         | (8ASE<br>5C3<br>EXTB<br>ACTY<br>PCT<br>61<br>67<br>70<br>79                                        | 5C1<br>NHA<br>PCT<br>7<br>8<br>9                                                                                                            |
| CM<br>000-20<br>020-28<br>028-38<br>038-56                                           | ORGANI<br>6A1A<br>ORGN<br>CARB<br>PCT<br>2.57E<br>1.81                               | C MAT<br>681A<br>NITG<br>PCT<br>-21<br>-16                                            | TER C/                                         | ) IR<br>N 6<br>F<br>P<br>2<br>1 1<br>0 1<br>8                       | ON<br>C1 A<br>XT<br>E<br>CT                                     | PHOS<br>651A<br>TOTL<br>PCT                    | (E)<br>6N2B<br>CA                                                                                   | CTRACT<br>602E<br>MG                           | ABLE B                                                 | ASES 56<br>602A<br>K                                                        | SUM<br>EXTB                                                           | ACTY<br>6H1A<br>BACL<br>TEA<br>) G-                                                     | AL<br>6G 10<br>KCL<br>EXT                     | CAT<br>SABA<br>EXTB<br>ACTY                                                    | EXCH)<br>SA1A<br>NHAC                                                       | RATIO<br>BD1<br>NHAC<br>TU                                                            | RATIO<br>803<br>CA<br>TU<br>MG                                           | CA<br>5F<br>SAT<br>NHAC<br>PCT<br>59<br>65<br>66<br>69             | (8ASE<br>5C3<br>EXTB<br>ACTY<br>PCT<br>61<br>67<br>70<br>79<br>81                                  | 5C1<br>NHA<br>PCT<br>7<br>8<br>9                                                                                                            |
| CM<br>                                                                               | ORGANI<br>6A1A<br>ORGAN<br>CARB<br>PCT<br>2.57E<br>1.81<br>1.30<br>.82<br>.34<br>.14 | C MAT<br>681A<br>NITG<br>PCT<br>-21<br>-16<br>-12<br>-08                              | TER<br>C/:<br>9 1<br>9 1<br>19 1               | ) IR<br>N 6<br>F<br>P<br>2<br>1 1<br>0 1<br>0 1                     | ON<br>C1 A<br>XT<br>E<br>CT<br>-8<br>-0<br>-1<br>-8             | PHOS<br>651A<br>TOTL<br>PCT                    | (E)<br>6N2B<br>CA<br>(<br>12.1<br>12.9<br>12.8<br>12.6<br>8.0<br>4.1                                | 3-5<br>3-6<br>4-4<br>4-8<br>3-5                | ABLE 8. 6PZA<br>NA                                     | ASES 5602A<br>K MEG<br>MEG<br>- 2<br>- 2<br>- 2<br>- 1<br>TR                | SUM<br>EXTB<br>) / 100<br>16.1<br>16.8<br>17.5<br>17.7<br>11.7        | ACTY<br>6H1A<br>BACL<br>TEA<br>) G<br>10.4<br>8.4<br>7.5<br>4.7<br>2.7<br>1.5           | AL<br>6G10<br>KCL<br>EXT                      | 1CAT<br>5A3A<br>EXTB<br>ACTY<br>26.5<br>25.2<br>25.2<br>22.4<br>14.4<br>7.4    | EXCH) 5A1A NHAC 20.5 19.9 19.3 18.3 11.5 5.2                                | RATIO<br>8D1<br>NHAC<br>TU<br>) CLAY<br>-95<br>-83<br>-74<br>-72<br>-80<br>-84<br>-96 | RATIO<br>803<br>CA<br>TU<br>MG<br>3.4<br>3.6<br>2.9<br>2.6<br>2.3<br>2.6 | CA<br>5F<br>SAT<br>NHAC<br>PCT<br>59<br>65<br>66<br>69<br>70       | (BASE<br>5C3<br>EXTB<br>ACTY<br>PCT<br>61<br>67<br>70<br>79<br>81<br>80                            | 5C1<br>NHAI<br>PCT<br>7:<br>8:<br>9<br>9:<br>10:                                                                                            |
| CM<br>CM<br>000-20<br>020-28<br>028-38<br>038-56<br>056-66<br>056-89<br>089-140      | ORGANI<br>GAIA<br>ORGN<br>CARB<br>PCI<br>2.57E<br>1.81<br>1.30<br>.82<br>.34<br>.14  | C MAT<br>681A<br>NITG<br>PCT<br>-21<br>-16<br>-12<br>-08<br>-04                       | 9 1 19 1 10 10 10 10 10 10 10 10 10 10 10 10 1 | ) IR<br>N 6<br>EF<br>P<br>2<br>1 1<br>0 1<br>8                      | ON<br>C1 A<br>XT<br>E<br>CT<br>-8<br>-0<br>-1<br>-8<br>-6       | PHOS<br>651A<br>TOTL<br>PCT                    | (E)<br>6N2B<br>CA<br>(<br>12.1<br>12.9<br>12.6<br>8.0<br>4.1                                        | 3-5<br>3-6<br>4-4<br>4-8<br>3-5<br>1-6         | ABLE 8<br>6P2A<br>NA<br>                               | ASES 56<br>602A<br>K<br>MEC                                                 | SUM EXTB   16.1   16.8   17.5   11.7   5.9                            | 10.4<br>8.4<br>7.5<br>4.7<br>1.5                                                        | AL<br>6Gł0<br>KCL<br>EXT                      | (CAT<br>5A3A<br>EXT8<br>EXT8<br>26.5<br>25.2<br>25.0<br>22.4<br>14.4<br>7.4    | EXCH)<br>5A1A<br>NHAC<br>20.5<br>19.9<br>19.3<br>18.3<br>11.5<br>5.2<br>1.7 | RATIO<br>8D1<br>NHAC<br>TU<br>) CLAY<br>.95<br>.63<br>.74<br>.72<br>.80<br>.84        | RATIO<br>803<br>CA<br>TU<br>MG<br>3.4<br>3.6<br>2.9<br>2.6<br>2.3<br>2.6 | CA<br>5F<br>SAT<br>NHAC<br>PCT<br>59<br>65<br>66<br>67<br>70<br>79 | (BASE<br>5C3<br>EXTB<br>ACTY<br>PCT<br>61<br>67<br>70<br>79<br>81<br>80                            | PCT<br>7<br>8<br>9<br>10<br>11                                                                                                              |
| CM<br>CM<br>000-20<br>020-28<br>028-38<br>038-56<br>056-66<br>056-89<br>089-140      | ORGANI<br>6A1A<br>ORGN<br>CARB<br>PCT<br>2.57E<br>1.81<br>1.30<br>.82<br>.34<br>.14  | C MAT<br>681A<br>NITG<br>PCT<br>-21<br>-16<br>-12<br>-08<br>-04                       | 9 1 19 1 10 PASTE 8A                           | ) IR<br>N 6<br>EF<br>P                                              | ON<br>C1 A<br>XT<br>E<br>CT<br>-8<br>-0<br>-1<br>-8<br>-6<br>-6 | PHOS<br>651A<br>TOTE<br>PCT<br>PCT             | (E)<br>6N2B<br>CA<br>(<br>12-1<br>12-9<br>12-8<br>12-6<br>8-0<br>4-1                                | 3.5<br>3.6<br>4.4<br>4.8<br>3.5<br>1.6         | ABLE 8. 6P2A NA .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 | MEC<br>MEC<br>MEC<br>- 2<br>- 2<br>- 2<br>- 2<br>- 1<br>TR                  | SUM<br>EXTB<br>3 / 100<br>16-1<br>16-8<br>17-5<br>17-7<br>11-7<br>5-9 | 10.4<br>8ACL<br>TEA<br>10.4<br>8.4<br>7.5<br>4.7<br>2.7<br>1.5                          | AL<br>6G10<br>KCL<br>EXT                      | (CAT<br>5A3A<br>EXTB<br>ACTY<br>26.5<br>25.2<br>25.2<br>22.4<br>14.4<br>7-4    | EXCH) 5A1A NHAC 20.5 19.9 18.3 11.5 5.2 1.7                                 | RATIO<br>8D1<br>NHAC<br>TUD<br>CLAY<br>-95<br>-63<br>-74<br>-72<br>-80<br>-84<br>-94  | RATIO<br>803<br>CA<br>TU<br>MG<br>3.4<br>3.6<br>2.9<br>2.6<br>2.3<br>2.6 | CA<br>5F<br>5F<br>NHAC<br>PCI<br>59<br>65<br>66<br>67<br>70<br>79  | (BASE 5C3 EXTB ACTY PCT 61 67 70 79 81 80 ATTERE 4F1                                               | 5C1<br>NHA<br>PCT<br>7<br>8<br>9<br>10<br>11                                                                                                |
| CM<br>000-20<br>20-28<br>228-38<br>238-56<br>56-66<br>56-89<br>140                   | ORGANI<br>GAIA<br>ORGN<br>CARB<br>PCT<br>2.57E<br>1.81<br>1.30<br>.82<br>.34<br>.14  | C MAT<br>681A<br>NITG<br>PCT<br>-21<br>-16<br>-12<br>-08<br>-04<br>ATED<br>BC18<br>PH | 9 1 19 1 10 PASTE 8A                           | ) IR<br>N 6<br>EF<br>P                                              | ON<br>C1 A<br>XT<br>E<br>CT<br>-8<br>-0<br>-1<br>-8<br>-6<br>-6 | PHOS<br>651A<br>TOTL<br>PCT                    | (E)<br>6N2B<br>CA<br>(<br>12-1<br>12-9<br>12-8<br>12-6<br>8-0<br>4-1<br>SALT<br>8D5<br>TOTL         | 3-5<br>3-6<br>4-4<br>3-5<br>1-6                | ABLE B. 6P2A NA                                        | ASES 58<br>60ZA<br>K<br>MEG<br>- 44<br>- 22<br>- 22<br>- 11<br>TR           | SUM<br>EXTB<br>3 / 100<br>16-1<br>16-8<br>17-5<br>17-7<br>11-7<br>5-9 | 10.4<br>8ACL<br>TEA<br>10.4<br>8.4<br>7.5<br>4.7<br>2.7<br>1.5                          | AL<br>6G10<br>KCL<br>EXT                      | (CAT<br>5A3A<br>EXTB<br>ACTY<br>26.5<br>25.2<br>25.2<br>22.4<br>14.4<br>7-4    | EXCH) 5A1A NHAC 20.5 19.9 18.3 11.5 5.2 1.7                                 | RATIO<br>8D1<br>NHAC<br>TUD<br>CLAY<br>-95<br>-63<br>-74<br>-72<br>-80<br>-84<br>-94  | RATIO<br>803<br>CA<br>TU<br>MG<br>3.4<br>3.6<br>2.9<br>2.6<br>2.3<br>2.6 | CA<br>5F<br>SAT<br>NHAC<br>PCT<br>59<br>65<br>66<br>67<br>70<br>79 | (BASE 5C3 EXTB ACTV PCT 61 67 70 79 81 80 ATTERE 4F1 LQID                                          | PCT<br>78<br>99<br>10<br>11<br>SERG<br>4F2<br>PLST                                                                                          |
| CM<br>000-20<br>20-28<br>228-38<br>238-56<br>56-66<br>56-89<br>140                   | ORGANI 6A1A ORGN PCT 2.57E 1.80 .82 .14 (SATUR REST OHM                              | C MAT<br>681A<br>NITG<br>PCT<br>-21<br>-16<br>-12<br>-08<br>-04<br>ATED<br>8C18<br>PH | 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1        | ) IR<br>N 6<br>F P<br>2<br>1 1<br>0 1<br>8<br>8<br>5<br>5<br>6<br>8 | ON A<br>CIT<br>                                                 | PHOS<br>651A<br>TOTL<br>PCT<br>NA<br>5E<br>SAR | (E)<br>6N2B<br>CA<br>(<br>12.1<br>12.9<br>12.8<br>12.6<br>8.0<br>4.1<br>SALT<br>8D5<br>TOTL<br>SOLU | 3-5<br>3-6<br>4-8<br>3-5<br>1-6<br>GYP<br>6F1A | ABLE 8. 6PZA NA                                        | ASES 56<br>60ZA<br>K<br>MEC<br>- 2<br>- 2<br>- 2<br>- 1<br>TR<br>6N18<br>CA | SUM EXTB / 100 16.1 16.8 17.5 17.7 5.9                                | ACTY<br>6H1A<br>8ACL<br>TEA<br>10-4<br>8-4<br>7-5<br>4-7<br>1-5<br>SATURA<br>6P1A<br>NA | AL<br>6G10<br>KCL<br>EXT<br>TION<br>6Q1A<br>K | (CAT<br>5A3A<br>EXTB<br>ACTY<br>26.5<br>25.0<br>22.4<br>14.4<br>7.4<br>EXTRACT | EXCH)<br>5A1A<br>NHAC<br>20.5<br>19.9<br>19.3<br>18.3<br>11.5<br>5.2<br>1.7 | RATIO<br>8D1<br>NHAC<br>TU<br>CLAY<br>-95<br>-63<br>-74<br>-72<br>-80<br>-84<br>-96   | RATIO<br>803<br>CA<br>TU<br>MG<br>3.4<br>3.6<br>2.9<br>2.6<br>2.3<br>2.6 | CA<br>5F<br>SAT<br>NHAC<br>PCT<br>59<br>65<br>66<br>69<br>70<br>79 | (BASE 5C3 EXTB ACTY PCT 61 67 70 79 81 80 ATTYERF LQID LMIT PCT PCT PCT PCT PCT PCT PCT PCT PCT PC | PCT 7 8 9 10 11 ERG 4F2 PLST                                                                                                                |
| CM<br>000-20<br>20-28<br>28-38<br>335-56<br>56-66<br>266-89<br>140<br>EPTH<br>CM     | ORGANI 6A1A ORGN PCT 2.57E 1.80 .82 .14 (SATUR REST OHM                              | C MAT<br>681A<br>NITG<br>PCT<br>-21<br>-16<br>-12<br>-08<br>-04<br>ATED<br>8C18<br>PH | 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1        | ) IR<br>N 6<br>F P<br>2<br>1 1<br>0 1<br>8<br>8<br>5<br>5<br>6<br>8 | ON A<br>CIT<br>                                                 | PHOS<br>651A<br>TOTL<br>PCT<br>NA<br>5E<br>SAR | (E)<br>6N2B<br>CA<br>(<br>12.1<br>12.9<br>12.8<br>12.6<br>8.0<br>4.1<br>SALT<br>8D5<br>TOTL<br>SOLU | 3-5<br>3-6<br>4-8<br>3-5<br>1-6<br>GYP<br>6F1A | ABLE 8. 6PZA NA                                        | ASES 56<br>60ZA<br>K<br>MEC<br>- 2<br>- 2<br>- 2<br>- 1<br>TR<br>6N18<br>CA | SUM EXTB / 100 16.1 16.8 17.5 17.7 5.9                                | ACTY<br>6H1A<br>8ACL<br>TEA<br>10-4<br>8-4<br>7-5<br>4-7<br>1-5<br>SATURA<br>6P1A<br>NA | AL<br>6G10<br>KCL<br>EXT<br>TION<br>6Q1A<br>K | (CAT) 5A3A EXTB ACTY 26.5 25.2 25.0 7.4 EXTRACT 611A CO3                       | EXCH)<br>5A1A<br>NHAC<br>20.5<br>19.9<br>19.3<br>18.3<br>11.5<br>5.2<br>1.7 | RATIO<br>8D1<br>NHAC<br>TU<br>CLAY<br>-95<br>-63<br>-74<br>-72<br>-80<br>-84<br>-96   | RATIO<br>803<br>CA<br>TU<br>MG<br>3.4<br>3.6<br>2.9<br>2.6<br>2.3<br>2.6 | CA<br>5F<br>SAT<br>NHAC<br>PCT<br>59<br>65<br>66<br>69<br>70<br>79 | (BASE 5C3 EXTB ACTY PCT 61 67 70 79 81 80 ATTYERF LQID LMIT PCT PCT PCT PCT PCT PCT PCT PCT PCT PC | PCT 7 8 9 10 11 EERG 4F2 PLST INDX                                                                                                          |
| CM 200-20 220-28 338-56 338-56 66-89 389-140 25PTH CM 200-20                         | ORGANI 6A1A ORGN PCT 2.57E 1.30 .82 .14 (SATUR REST OHM                              | C MAT<br>681A<br>NITG<br>PCT<br>-21<br>-16<br>-12<br>-08<br>-04<br>ATED<br>8C18<br>PH | 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1        | ) IR<br>N 6<br>F P<br>2<br>1 1<br>0 1<br>8<br>8<br>5<br>5<br>6<br>8 | ON A<br>CIT<br>                                                 | PHOS<br>651A<br>TOTL<br>PCT<br>NA<br>5E<br>SAR | (E)<br>6N2B<br>CA<br>(<br>12.1<br>12.9<br>12.8<br>12.6<br>8.0<br>4.1<br>SALT<br>8D5<br>TOTL<br>SOLU | 3-5<br>3-6<br>4-8<br>3-5<br>1-6<br>GYP<br>6F1A | ABLE 8. 6PZA NA                                        | ASES 56<br>60ZA<br>K<br>MEC<br>- 2<br>- 2<br>- 2<br>- 1<br>TR<br>6N18<br>CA | SUM EXTB / 100 16.1 16.8 17.5 17.7 5.9                                | ACTY<br>6H1A<br>8ACL<br>TEA<br>10-4<br>8-4<br>7-5<br>4-7<br>1-5<br>SATURA<br>6P1A<br>NA | AL<br>6G10<br>KCL<br>EXT<br>TION<br>6Q1A<br>K | (CAT<br>5A3A<br>EXTB<br>ACTY<br>26.5<br>25.0<br>22.4<br>14.4<br>7.4<br>EXTRACT | EXCH)<br>5A1A<br>NHAC<br>20.5<br>19.9<br>19.3<br>18.3<br>11.5<br>5.2<br>1.7 | RATIO<br>8D1<br>NHAC<br>TU<br>CLAY<br>-95<br>-63<br>-74<br>-72<br>-80<br>-84<br>-96   | RATIO<br>803<br>CA<br>TU<br>MG<br>3.4<br>3.6<br>2.9<br>2.6<br>2.3<br>2.6 | CA<br>5F<br>SAT<br>NHAC<br>PCT<br>59<br>65<br>66<br>69<br>70<br>79 | (BASE 5C3 EXTB ACTY PCT 61 67 70 79 81 80 ATTERE 4FI LQID LMIT PCT                                 | PCT 7 8 9 10 11 ERG 4F2 PLST                                                                                                                |
| CM                                                                                   | ORGANI 6A1A ORGN PCT 2.57E 1.30 .82 .14 (SATUR REST OHM                              | C MAT<br>681A<br>NITG<br>PCT<br>-21<br>-16<br>-12<br>-08<br>-04<br>ATED<br>8C18<br>PH | 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1        | ) IR<br>N 6<br>F P<br>2<br>1 1<br>0 1<br>8<br>8<br>5<br>5<br>6<br>8 | ON A<br>CIT<br>                                                 | PHOS<br>651A<br>TOTL<br>PCT<br>NA<br>5E<br>SAR | (E)<br>6N2B<br>CA<br>(<br>12.1<br>12.9<br>12.8<br>12.6<br>8.0<br>4.1<br>SALT<br>8D5<br>TOTL<br>SOLU | 3-5<br>3-6<br>4-8<br>3-5<br>1-6<br>GYP<br>6F1A | ABLE 8. 6PZA NA                                        | ASES 56<br>60ZA<br>K<br>MEC<br>- 2<br>- 2<br>- 2<br>- 1<br>TR<br>6N18<br>CA | SUM EXTB / 100 16.1 16.8 17.5 17.7 5.9                                | ACTY<br>6H1A<br>8ACL<br>TEA<br>10-4<br>8-4<br>7-5<br>4-7<br>1-5<br>SATURA<br>6P1A<br>NA | AL<br>6G10<br>KCL<br>EXT<br>TION<br>6Q1A<br>K | (CAT<br>5A3A<br>EXTB<br>ACTY<br>26.5<br>25.0<br>22.4<br>14.4<br>7.4<br>EXTRACT | EXCH)<br>5A1A<br>NHAC<br>20.5<br>19.9<br>19.3<br>18.3<br>11.5<br>5.2<br>1.7 | RATIO<br>8D1<br>NHAC<br>TU<br>CLAY<br>-95<br>-63<br>-74<br>-72<br>-80<br>-84<br>-96   | RATIO<br>803<br>CA<br>TU<br>MG<br>3.4<br>3.6<br>2.9<br>2.6<br>2.3<br>2.6 | CA<br>5F<br>SAT<br>NHAC<br>PCT<br>59<br>65<br>66<br>69<br>70<br>79 | (BASE 5C3 EXTB ACTY PCT 61 67 70 79 81 80 ATTERE 4FI LQID LMIT PCT                                 | 5C1<br>NHA<br>PCT<br>7<br>8<br>9<br>9<br>10<br>11<br>11<br>12<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18 |
| CM<br>000-20<br>20-28<br>28-38<br>335-56<br>56-66<br>266-89<br>140<br>EPTH<br>CM     | ORGANI 6A1A ORGN PCT 2.57E 1.30 .82 .14 (SATUR REST OHM                              | C MAT<br>681A<br>NITG<br>PCT<br>-21<br>-16<br>-12<br>-08<br>-04<br>ATED<br>8C18<br>PH | 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1        | ) IR<br>N 6<br>F P<br>2<br>1 1<br>0 1<br>8<br>8<br>5<br>5<br>6<br>8 | ON A<br>CIT<br>                                                 | PHOS<br>651A<br>TOTL<br>PCT<br>NA<br>5E<br>SAR | (E)<br>6N2B<br>CA<br>(<br>12.1<br>12.9<br>12.8<br>12.6<br>8.0<br>4.1<br>SALT<br>8D5<br>TOTL<br>SOLU | 3-5<br>3-6<br>4-8<br>3-5<br>1-6<br>GYP<br>6F1A | ABLE 8. 6PZA NA                                        | ASES 56<br>60ZA<br>K<br>MEC<br>- 2<br>- 2<br>- 2<br>- 1<br>TR<br>6N18<br>CA | SUM EXTB / 100 16.1 16.8 17.5 17.7 5.9                                | ACTY<br>6H1A<br>8ACL<br>TEA<br>10-4<br>8-4<br>7-5<br>4-7<br>1-5<br>SATURA<br>6P1A<br>NA | AL<br>6G10<br>KCL<br>EXT<br>TION<br>6Q1A<br>K | (CAT<br>5A3A<br>EXTB<br>ACTY<br>26.5<br>25.0<br>22.4<br>14.4<br>7.4<br>EXTRACT | EXCH)<br>5A1A<br>NHAC<br>20.5<br>19.9<br>19.3<br>18.3<br>11.5<br>5.2<br>1.7 | RATIO<br>8D1<br>NHAC<br>TU<br>CLAY<br>-95<br>-63<br>-74<br>-72<br>-80<br>-84<br>-96   | RATIO<br>803<br>CA<br>TU<br>MG<br>3.4<br>3.6<br>2.9<br>2.6<br>2.3<br>2.6 | CA<br>5F<br>SAT<br>NHAC<br>PCT<br>59<br>65<br>66<br>69<br>70<br>79 | (BASE 5C3 EXTB ACTY PCT 617 77 79 81 80 ACTY FILL QUID LHIT PCT 37C                                | PCT 7 8 9 10 11 EERG 4F2 PLST INDX                                                                                                          |
| CM  100-20 220-28 335-56 56-66 66-89 89-140  CM  CM  CM  100-20 120-28 120-28 128-38 | ORGANI 6A1A ORGN PCT 2.57E 1.30 .82 .14 (SATUR REST OHM                              | C MAT<br>681A<br>NITG<br>PCT<br>-21<br>-16<br>-12<br>-08<br>-04<br>ATED<br>8C18<br>PH | 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1        | ) IR<br>N 6<br>F P<br>2<br>1 1<br>0 1<br>8<br>8<br>5<br>5<br>6<br>8 | ON A<br>CIT<br>                                                 | PHOS<br>651A<br>TOTL<br>PCT<br>NA<br>5E<br>SAR | (E)<br>6N2B<br>CA<br>(<br>12.1<br>12.9<br>12.8<br>12.6<br>8.0<br>4.1<br>SALT<br>8D5<br>TOTL<br>SOLU | 3-5<br>3-6<br>4-8<br>3-5<br>1-6<br>GYP<br>6F1A | ABLE 8. 6PZA NA                                        | ASES 56<br>60ZA<br>K<br>MEC<br>- 2<br>- 2<br>- 2<br>- 1<br>TR<br>6N18<br>CA | SUM EXTB / 100 16.1 16.8 17.5 17.7 5.9                                | ACTY<br>6H1A<br>8ACL<br>TEA<br>10-4<br>8-4<br>7-5<br>4-7<br>1-5<br>SATURA<br>6P1A<br>NA | AL<br>6G10<br>KCL<br>EXT<br>TION<br>6Q1A<br>K | (CAT<br>5A3A<br>EXTB<br>ACTY<br>26.5<br>25.0<br>22.4<br>14.4<br>7.4<br>EXTRACT | EXCH)<br>5A1A<br>NHAC<br>20.5<br>19.9<br>19.3<br>18.3<br>11.5<br>5.2<br>1.7 | RATIO<br>8D1<br>NHAC<br>TU<br>CLAY<br>-95<br>-63<br>-74<br>-72<br>-80<br>-84<br>-96   | RATIO<br>803<br>CA<br>TU<br>MG<br>3.4<br>3.6<br>2.9<br>2.6<br>2.3<br>2.6 | CA<br>5F<br>SAT<br>NHAC<br>PCT<br>59<br>65<br>66<br>69<br>70<br>79 | (BASE 5C3 EXTB ACTY PCT 617 77 79 81 80 ACTY FILL QUID LHIT PCT 37C                                | 5C) NHA PCT 18 89 10 11 11 11 11 11 11 11 11 11 11 11 11                                                                                    |

<sup>(</sup>A) ESTINATED.

(B) ORGANIC CARBON IS 14 KG/M SQ TO A DEPTH OF 1 M (6A).

(C) LL AND PI DETERMINED BY STATE HAY DEPT, AMES, IOWA.

Pedon classification: Typic Hapludoll; fine-loamy over sandy or sandy-skeletal, mixed, mesic.

Series classification: Same as pedon.

Soil: Wadena loam.

Soil no.: S59-Iowa-21-1 (LSL Nos. 11121 - 11127).

Location: Clay County, Iowa; 80 feet east of road center, 0.1 mile south of northwest corner of SW4 of Sec. 9, T. 96 N., R. 37 W.

Vegetation and land use: Alfalfa; cropland.

Parent material: Glacial outwash of the Late Wisconsin glaciation; about 22 inches of quite silty but gritty material overlying calcareous and stratified gravel and sand; gravel is predominantly fine gravel. Sand and gravel extend to at least 100 inches.

Slope: Broad, level outwash plain; slope less than 1 percent. Described by: F. J. Carlisle and R. I. Turner; June 8, 1959.

(Colors are for moist soil unless otherwise stated)

Alp 11121 0 to 20 cm (0 to 8 inches). Very dark brown (10YR 2/2) very dark grayish brown (10YR 3/2) dry; heavy loam (approaching silt loam); cloddy crushing to weak fine granular; friable; sand grains are predominantly clear and do not appear to be coated; gradual smooth boundary.

A3 11122 20 to 28 cm (8 to 11 inches). Very dark brown (10YR 2/2) very dark grayish brown (10YR 3/2) with small spots of dark grayish brown (10YR 4/2) dry, heavy loam (approaching silt loam); appears nearly massive in place but crushes readily to fine granules without change in color, then increases about one unit in value on further crushing; friable; common dark spherical wormcasts and a few dark brown spots (approximately ½ cm) of material mixed from below; horizontal parting suggests plow sole in upper part; gradual smooth boundary.

B1 11123 28 to 38 cm (11 to 15 inches). A horizon of mixed materials apparently due to earthworm activity; predominantly very dark grayish brown (10YR 3/2) and about one-third very dark brown (10YR 2/2); dark grayish brown (10YR 4/2) and brown (10YR 4/3) dry; gritty light silty clay loam approaching clay loam (estimated about 29 percent clay); essentially massive but with suggestion of very weak subangular blocky structure; cleaves more readily along horizontal and vertical planes than diagonal ones; friable but slightly more firm in place than A horizons; gradual boundary.

B21 11124 38 to 55 cm (15 to 22 inches). Brown (10YR 4/3) clay loam approaching silty clay loam; evident vertical cleavage suggests very weak prismatic structure; horizontal cleavage is very weak; slightly firm in place but friable when removed; smooth, patchy, dark brown to very dark brown coats on sand and fine gravel grains, on cleavage faces, and in some fine pores may be thin clay films but they are not distinct enough (thick enough?) to be seen in cross section; some very dark brown wormcasts in upper part of horizon; gradual to clear boundary.

ILIIB22 11125 55 to 65 cm (22 to 26 inches). Brown (10YR 4/3) heavy sandy loam; essentially massive but with very weak vertical cleavage; friable; smooth, patchy, dark brown to very dark brown coats on fine gravel pieces, pores and cleavage faces as in horizon above; clear boundary.

IIB3 11126 65 to 88 cm (26 to 35 inches). Dark brown (10YR 3/3) loamy sand; massive; very friable but slightly coherent; smooth, patchy, dark brown coats on coarse sand and fine gravels suggest clay films; upper one-half of horizon is slightly more coherent and probably contains slightly more fine material than lower one-half; effervesces slightly with HCl; clear boundary.

IIC 11127 88 to 140 cm (35 to 55 inches). Dark yellowish brown and brown stratified medium sand and fine gravel; strata mostly 3 to 10 inches thick; single grain; loose; calcareous; carbonate films about 0.1 to 0.5 mm thick cement small clusters of sand to bottom surface of many gravels. The abundance of carbonate films and amount of distinctly brownish colors seems to diminish with depth below about 55 inches.

Remarks: Krotovina about 12 by 18 inches and tapering to about 6 by 6 inches across one side of sampling pit in B22 and B3 horizons. Material of krotovina is distinctly darker colored and appears appreciably higher in organic matter than surrounding soil material. Fibrous fine roots are abundant in upper 15 inches, are common in the B2 horizon, and sparse in the C horizon. Color value of crushed soil material from the B horizon is very slightly higher than uncrushed material. The pedon was moist but below field capacity when described and sampled. Boring indicated a water table at 100-inch depth.

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE METSC SOIL SURVEY INVESTIGATIONS UNIT LINCOLN, NEBRASKA

SOIL NO - - - - - - S591A-21-2 COUNTY - - - CLAY

ı,

(A) ESTIMATED.
(B) ORGANIC CARDON IS 16 KG/M SQ TO A DEFIM OF 1 M (6A).

| СМ               |               |              | 2-<br>•05<br>( | .05-                 | .002                 | CLAY<br>LT<br>.0002 | vcos                 | CORS<br>1-<br>-5      | MEDS<br>•5-<br>•25<br>- PCT | FNES<br>-25-<br>-10<br>LT 2M | VFNS<br>-10-<br>-05         | .05<br>.02               | FNSI<br>-02<br>-002 | .005<br>.002          | TEXT<br>SAND<br>2**1       | •2-<br>•02<br>)                                     | CLAY<br>TO<br>CLAY<br>PCT | CD3-<br>CLAY<br>PCT | BAR<br>TO<br>CLAY |
|------------------|---------------|--------------|----------------|----------------------|----------------------|---------------------|----------------------|-----------------------|-----------------------------|------------------------------|-----------------------------|--------------------------|---------------------|-----------------------|----------------------------|-----------------------------------------------------|---------------------------|---------------------|-------------------|
| 000-18           | AlP           |              | 36.6           | 39.2                 | 24.2                 |                     | 3.7                  | 12.3                  | 10.9                        | 7.6                          | 2.1                         |                          | 20.7                |                       | 34.5                       | 23.0<br>24.2<br>26.5<br>26.8<br>25.6<br>12.4<br>7.1 |                           |                     | .46               |
| 018-28           | A12<br>81     |              | 29.2           | 44.9                 | 25.9                 |                     | 2.4                  | 9.8                   | 8.7                         | 6-4                          | 1.9                         |                          | 24.6                |                       | 27.3                       | 24.2                                                |                           |                     | .43               |
| 028-41<br>041-56 | 621           |              | 18-4           | 50.0                 | 31.6                 |                     | 1.7                  | 4.5                   | 4.9                         | 4.9                          | 2.4                         |                          | 27:4                |                       | 15.0                       | 26.8                                                |                           |                     | - 38              |
| 056-66           | 162B          | 22           | 47.6           | 30.7                 | 21.7                 |                     | 5.0                  | 11.1                  | 11.8                        | 16.0                         | 3.7                         |                          | 15.3                |                       | 43.9                       | 25.6                                                |                           |                     | •40               |
| 066-81           | 283           |              | 84.5           | 8.7                  | 6-8                  |                     | 18.1                 | 25.6                  | 21.6                        | 16.3                         | 2.9                         |                          | 4-4                 |                       | 81.6                       | 12.4                                                |                           |                     | .50               |
| 081-140          | ) 2C          |              | 89.2           | 6.6                  | 4.2                  |                     | 13.8                 | 31-6                  | 30.2                        | 12.2                         | 1.4                         |                          | 3.4                 |                       | 87.8                       | 7.1                                                 |                           |                     | .67               |
| DEPTH            | (PARTI        | CLE SI       | ZE ANA         | vere.                | MW. 1                | 10. 201             | - 382                | 16 810                | -                           | 1TV 1                        |                             | -WAT                     | COI                 | eteut.                |                            | CARBO                                               | MATE                      |                     |                   |
|                  | VOL.          | (            |                | - WEI                | GHT -                |                     |                      | 4A1c                  | 4A1H                        | 401                          | 4B1C                        | 4B 3                     | 482                 | 4C1                   |                            | 6ElA                                                | 3A1A                      | 8C1A                | 8616              |
|                  | ĢT            | GT           | 75-20          | 20-5                 | 5-2                  | LT                  | 20-2                 | 1/3-                  | OVEN                        | COLE                         | 1/10                        | 1/3-                     | 15-                 | WRD                   |                            | LT                                                  | LT                        |                     | 1/2               |
| CM               | PCT           | PCT          | (              | PCT L                | T 75                 | )                   | LT ZO                | G/CC                  | G/CC                        |                              | PCT                         | PCT                      | PÇT                 | CM                    |                            | 6ElA<br>LT<br>2<br>PCT                              | PCT                       | H20                 |                   |
| 000-18           |               |              |                |                      |                      |                     |                      |                       |                             |                              |                             |                          |                     |                       |                            |                                                     |                           | 5.7                 |                   |
| 018-28           |               |              |                |                      |                      |                     | TP                   | 1.25                  | 1.32                        | -017                         |                             | 27                       | 11.2                | 20                    |                            |                                                     |                           | 5.8                 |                   |
| 028-41           |               |              |                |                      |                      |                     | TR                   | 1.23                  | 1.30<br>1.49<br>1.67        | -017                         |                             | 26                       | 11-4                | -18                   |                            |                                                     |                           | 5 - 8               |                   |
| 041-56           |               |              |                |                      |                      |                     | TR                   | 1.37                  | 1.49                        | .028                         |                             | 24                       | 11.9                | -17                   |                            |                                                     |                           | 5.8<br>5.9          |                   |
| 056-66<br>066-81 |               |              |                |                      |                      |                     | 1K                   | 1.404                 | 1.67                        | .017                         |                             | 10                       | 3.4                 | .12                   |                            | 0                                                   |                           | 7.1                 |                   |
| 081-140          | )             |              |                |                      |                      |                     | 45                   | 11004                 |                             |                              |                             |                          | 2.8                 |                       |                            | 0<br>1T                                             |                           | 8.3                 |                   |
| DEPTH 6          |               | 6BLA<br>NITG | ER )<br>C/N    | ERON<br>6C1 A<br>FXT | PHOS<br>651A<br>TOTA | (EX<br>6N2B<br>CA   | TRACTA<br>602B<br>MG | ABLE BA<br>6PZA<br>NA | ASES 58                     | 4A)<br>Sum<br>Extb           | ACTY<br>6H1A<br>BACL<br>TEA | AL<br>6G1D<br>KCL<br>EXT | EXTB<br>EXTE        | EXCH)<br>SALA<br>NHAC | RATIO<br>8D1<br>NHAC<br>TO | BD3<br>CA<br>TO                                     | CA                        |                     | SAT)<br>SC1       |
|                  |               |              |                |                      |                      |                     |                      |                       |                             |                              |                             |                          |                     |                       |                            |                                                     |                           |                     |                   |
| 000-18<br>018-28 | 3.68B<br>2.19 | .306         |                | .9F                  |                      | 15.6                | 4.D                  | -1                    | .5                          | 20.2                         | 11.5                        |                          | 28.3                | 23.1                  | . 95<br>. 81               |                                                     | 68<br>60                  | 64<br>60            | 87<br>82          |
| 028-41           | 1.39          | .133         |                | 1.2F                 |                      | 12.1                | 4.6                  | .1                    | .2                          | 17.0                         | 10.2                        |                          | 27.2                | 20.0                  | -69                        |                                                     | 61                        |                     | 85                |
| 041-56           |               |              |                |                      |                      | 14.0                | 6.0                  | . 1                   | .3                          | 20-4                         | 6.8                         |                          | 27.2                | 22.2                  | .70                        |                                                     | 63                        | 75                  | 92                |
| 056-66           | - 64          | •063         | 10             | 1.1F                 |                      | 10.5                | 4.6                  | .1                    | -2                          | 15.4                         | 4.7                         |                          | 20.1                | 16.4                  | •76                        |                                                     | 64                        |                     | 94                |
| 066-81           | .39           |              |                | 1.1F                 |                      | 14.0<br>10.5<br>5.2 | 2.2                  | TR<br>TR              | •2<br>•1                    | 7.5                          | 2.7                         |                          | 10.2                | 3.8                   | .96                        | 2.4                                                 | 80                        | 74                  | 115               |
| 081-140          | , .01         |              |                | • / "                |                      |                     |                      | į K                   | •1                          |                              |                             |                          |                     | 3.0                   | . 70                       |                                                     |                           |                     |                   |

Pedon classification: Typic Hapludoll: fine-loamy over sandy or sandy-skeletal, mixed mesic. Series classification: (Same as pedon).

Soil: Wadena loam;

Soil no.: S59-Iowa-21-2 (LSL Nos. 11128 - 11134).

Clay County, Iowa, 104 yards east and 93 yards south (from road center) of the northwest corner of the NE's of sec. 18, T. 97 N., R. 37 W.

Vegetation and land use: Alfalfa; cropland.

Parent material: Glacial outwash of the Lake Wisconsin glaciation; about 26 inches of medium-textured silty sediments over coarse-textured stratified sand and gravel. Parent materials are thought to have been calcareous.

Drainage: Well drained.

Described by: F. J. Carlisle and R. I. Turner; June 9, 1959.

(Colors are for moist soil unless otherwise stated)

Alp 11128 0 to 18 cm (0 to 7 inches). Black (10YR 2/1) gritty silt loam; dark gray (10YR 4/1) dry; cloddy (with distinct horizontal parting when nearly dry) crushing to weak fine granular; friable; most sand grains are clear and do not appear to be coated, but many have patchy, dark brown coating; indistinct boundary.

Al2 11129 18 to 28 cm (7 to 11 inches). Very dark brown (10YR 2/2) gritty heavy silt loam; seems massive but easy vertical parting and some horizontal parting suggest very weak prisms; color remains the same when gently crushed to medium and fine granular sizes, then becomes slightly browner when crushed further; friable; uppermost inch is distinct medium angular blocky "plow sole" or "traffic pan" that contrasts in structure to the material below; gradual boundary.

28 to 40 cm (11 to 16 inches). Very dark brown (10YR 2/2), dark grayish brown (10YR 4/2) dry; gritty heavy silt loam; very weak subangular blocky arranged in weak fine prisms; friable; crushes to slightly browner color (about 2.5Y 2/2); abundant fine tubular pores; patches of smooth, very dark brown coatings on arning and in fine norm lock like claw films but are exceedingly thin and all houndary

B21 11131 40 to 55 cm (16 to 22 inches). Predominantly dark brown (10YR 3/3) with about 20 percent very dark brown (10YR 2/2), slightly gritty light silty clay loam; very weak subangular blocky arranged in weak to moderate coarse prisms; slightly firm; abundant fine tubular pores; patches of smooth shiny material on pore, prism, and sand grains surfaces may be very thin clay films; gradual boundary.

16IIB22 11132 55 to 65 cm (22 to 26 inches). Brown (10YR 4/3) light clay loam; weak medium subangular blocky arranged in weak medium prisms; smooth, slightly darker patches on prism faces may be very thin clay films; common fine tubular pores.

IIB3 11133 65 to 80 cm (26 to 32 inches). Brown (10YR 4/3) gravelly sandy loam (about 20 to 25 percent fine gravel); massive and very friable; coheres in some fairly durable coarse subangular blocky lumps and much very slightly coherent (nearly single grain) material; patchy, smooth dark brown and very dark brown coatings on most sand and gravel pieces look like very thin clay films; effervesces weakly with HCl (probably limestone gravel); clear boundary.

11134 80 to 140 cm (32 to 55 inches). Yellowish brown calcareous sand and gravel; single grain; loose; a silt stratum I inch thick at 3-foot depth is nearly continuous in sample pit but is slightly wavy and shows

Remarks: The numbers of plant roots decrease gradually with depth. They are abundant in the upper 16 inches, common from 16 to 26 inches, and scarce below 26 inches. From 55 to 61 inches is banded silt and medium sand strata about one-half to 1 inch thick. The silt is predominantly gray and the sand strong brown.

| FRUES                                                                 | ASSIFL                    |              | FINE,   | MONTA        |              | ONITIC.      | HESI                                  | :             | ٠.           |              |              |              |                    | . S.2        | IL CON<br>IL SUR | SERVAT         | TON SE       | RVICE       | MRTSC<br>UNIT |
|-----------------------------------------------------------------------|---------------------------|--------------|---------|--------------|--------------|--------------|---------------------------------------|---------------|--------------|--------------|--------------|--------------|--------------------|--------------|------------------|----------------|--------------|-------------|---------------|
| DIL NO                                                                | 1 – – –                   |              | - 56910 | 84-AH        | -1 (         | COUNTY       | <u> </u>                              | MONRO         | E            |              |              |              |                    |              |                  |                |              |             |               |
| ENERAL                                                                | . METHO                   | DS           | -1.A2 A | 1B1B.        | 182.1B       | -            |                                       | SAMPL         | E NOS.       | <b>69L10</b> | 41-69L       | 1051         |                    |              |                  |                |              |             |               |
| DEPTH                                                                 | HORI                      | ZON          | (       |              |              |              |                                       | PARTICL       | E SIZE       |              | SIS, L       | T 2HM.       |                    | 3ALA,        | 3A18 -           |                |              | 1           | RATIO         |
| -                                                                     | -                         |              | SAND    | SILT         | CLAY         |              |                                       | CORS          |              |              |              |              |                    |              |                  |                |              |             |               |
|                                                                       |                           |              | . 2     | -05-         | LT           | LT<br>-000   | 2 <del>±</del> .                      | 1-<br>•5      | .5-<br>.25   | _25          | 10±          | 05           | -02                | -005-        | <u>SAND</u>      | 2-             | <u> 7.0 </u> | CT BY       | . BAR         |
| CM                                                                    |                           |              |         |              |              |              |                                       |               | · PCT        | LT 2M        | M            |              |                    |              |                  | )              | PGT.         | PCI         | CL AV         |
| 0-010                                                                 |                           |              | 2.9A    | 77.5         | 19.6         |              | .2                                    | .7            | -6           | .8           |              |              | 45.9               |              | 2.3              | 32.6           |              |             | 56            |
| 0-018                                                                 |                           |              | 2.14    | 77.3         | 20.6<br>21.8 |              | •1<br>•0                              | •4            | .5<br>.4.    | -6           | .5           | 31.3         |                    |              | 1.6              | 32.1           |              |             | •41<br>-38    |
| 8-048                                                                 | AB                        |              | 2-1A    | 72.0         | 25.9         |              | -1                                    | -4            | .5           | .6           | .5           | 28.6         | 43.4               |              | 1.6              | 29.4           |              |             | .39<br>.42    |
| 18+058<br>58-071                                                      | B21                       |              | 1.2A    | 51.3         |              |              | -1<br>TR                              | .3            | •3<br>•2     | .3           | .4           | 26.2<br>20.4 | 30.9               |              | -8               | 26.9<br>20.9   |              |             | .43           |
| 71-084<br>34-097                                                      |                           |              | -7A     | 55.6         | 46.6<br>43.7 |              | .0                                    | . l           | .2<br>.1     | -3<br>-2     | .4           | 19.2<br>20.4 | 33.1<br>35.2       |              | .7<br>.4         | 19.7<br>20.8   |              |             | <u></u>       |
| 77 <u>– 119</u><br>19– 145                                            |                           |              | - 7A    | 59.4<br>64.0 | 39.9         |              | -0                                    | 1             | - 1          | -2           | _3           |              | 36.2               |              | •4.              | _23_6_<br>25_4 |              |             | 49            |
| 5-175                                                                 |                           |              |         | 68.0         |              |              | ŤŘ                                    |               |              | .3           | .3           | 27.0         |                    |              |                  | 27.5           |              |             | 48            |
|                                                                       |                           |              |         |              |              |              |                                       |               |              |              |              |              |                    |              |                  |                |              |             |               |
|                                                                       |                           |              |         |              |              |              |                                       |               |              |              |              |              |                    |              |                  |                |              |             |               |
| PTH                                                                   | (PARTI                    |              |         |              |              |              |                                       |               |              | ITY )        | (            | -WATE        | R CON              |              | )                | CARBO          |              | (PH         |               |
|                                                                       | GT<br>2                   | GT<br>75     | 75-20   | 20-5         | 5-2          | LT<br>-074   | 20-2                                  | 1/3~          | DVEN<br>DRY  | COLE         | 1/10         | 1/3-<br>BAR  |                    | WRD<br>CMZ   |                  | LT             |              | 1/1<br>H20  | 1/2           |
| :M                                                                    | PCT                       |              |         |              | LT 75 -      | 1            | LT20                                  | G/CC          | G/CC         |              | PCT          | PCT          | PCT                |              |                  | PCT            |              |             |               |
|                                                                       |                           |              |         |              |              |              |                                       | 1.08          | 1 21         |              | 30 7         | 36 4         |                    |              | ·                |                |              |             |               |
| 0-010<br>0-018                                                        | 3 0                       | 0            | 0       | 0            | 0            | 98<br>98     | ō                                     | 1.42          | 1.47         | .039         | 29.8         | 26.6         | 10.5<br>8.5        | .26          | 3.3C<br>4.1C     |                |              | 5.3         | 4.8           |
| 8-038<br>8-048                                                        |                           | 0            | 0       | Q<br>O       | 00000        | 99<br>98     |                                       | 1.35<br>1.35  | 1.42<br>1.49 | .017<br>.034 | 28.2<br>26.7 | 24.6         | . 8 <sub>4</sub> 2 |              | 1.7C             |                |              | 4.6         | 3.8           |
| 8-058<br>8-071                                                        |                           | 0            | 0       | 0            | 0            | 99<br>99     |                                       | 1.47          | 1.60         | .029         | 26.9<br>34.0 | 25.5<br>32.5 | 13.0               |              | 2.8C             |                | -            | 4.3         | 3.7           |
| 71-084                                                                | 0                         | 0            | 0       | 0            | ŏ            | 99           | 0                                     | 1.37          | 1.89         | .113         | 35.4         | 33.3         | 19-2               | .19          | 1.5C             |                |              | 4.4         | 3.9           |
| 34-097<br>37-119                                                      | 0                         | ŏ            | 0       | 0            | 0            | 100          | O                                     | 1.38          | 1.86         | .105         | 33.1<br>28.5 | 31.9<br>25.1 | 20.4<br>19.0       |              | 1.3C<br>L.5C     |                |              | 4-5         | 4.1           |
| 9-145<br>5-175                                                        |                           | 0            | 0       | 0            | 0            | 99<br>100    |                                       | 1.40B<br>1.44 | 1.61         | .038         | 24.9         | 23.3         | 17.2<br>15.1       | .12          | 0.4C             |                |              | 5.1<br>5.8. | 4.5<br>5_3    |
|                                                                       |                           |              |         |              |              |              |                                       |               |              |              |              |              |                    |              |                  | - 1            | LL 87 1 7    |             |               |
| PTH (                                                                 | ORGANI                    |              | rer )   | IRON         | PHOS         | (E)          | TRACT                                 | ABLE BA       | SES SE       | 441          | ACTY         | AL           |                    | EXCH)        |                  |                | CA           |             | SAT)          |
|                                                                       |                           | 6B1A<br>NITG | C/N     | 6C2A<br>Ext  | 651A<br>TOTL | 6NZE<br>CA   | 602D<br>MG                            | 6PZA<br>NA    | 6QZA<br>K    | SUM          | 6H1A<br>Bacl |              | 5A3A<br>Extr       | 5A6A<br>NHAC |                  | BD3<br>CA      | 5F<br>S AT   |             | NHAC          |
| CM                                                                    | CARB<br>PCT               | PCT          |         | FE<br>PCT    |              |              |                                       |               |              | EXTB         | TEA          | £ΧΤ          | ACTY               | )            |                  | TO.            | NHAÇ<br>PCT  | PCT         | PCT           |
|                                                                       |                           |              |         |              |              |              |                                       |               |              |              |              |              |                    |              |                  |                |              |             |               |
| 0-018                                                                 | 3.04D<br>1.89             | -14          | 1 13    |              |              | 18.5<br>7.3  | 2.3<br>2.0                            | 0.1<br>0.1    | 0.3          |              | 6.8<br>11.0  |              | 20.6               | 15-1         | 1.05<br>0.73     | 8.0<br>3.7     | 90<br>48     | 76<br>47    | 103<br>64     |
|                                                                       | 0.57                      | .07          | 1 8     |              |              | 2.1<br>2.4   | 1.6<br>2.6                            | 0.2           | 0.2          |              | 12.6         | 3.5<br>5.2   | 16.7               | 12.4         | 0.57<br>0.58     | 1.3.<br>0.9    | _17<br>16    | .25.<br>28  |               |
| 8-058                                                                 | 0.27                      | .04          | ? 6     |              |              | 3.9<br>8.2   | 4.1<br>7.9                            | 0.4           | 0.4          | 8.8<br>17.6  | 15.8         | 5.7          | 24.6               | 19.4         | 0.63             | 1.0            | 20<br>25     | 36<br>45    | 45<br>54      |
| 1-084                                                                 | 0.31                      | .04          | . ,     |              |              | 9.1          | 8.6                                   | 1.0           | 0.7          | 19.4         | 21.7         | 6-4          | 41.1               | 32.5         | 0.70             | 1.1            | 28           | 47          | 60            |
| 7-119                                                                 | 0.26                      |              |         |              |              | 9.7<br>10.8  | 8.9<br>9.5                            | 1.1           | 0.7          | 20.4         | 13.5         | 2.9          | 37.8<br>35.8       | 31.0<br>29.3 | 0.71             | 1.1            | 37           | .62_        | <u>76</u> .   |
|                                                                       | 0.11<br>6 0.11            |              |         |              |              | 12.3<br>12.3 | 9.4<br>8.9                            | 1.3<br>1.2    |              | 23.8<br>23.1 | 8.7<br>4.9   | 0.8          | 32.5<br>28.0       | 26.7<br>24.4 |                  | 1.3            | 46<br>50     | 73<br>63    | 89<br>95.     |
|                                                                       |                           |              |         |              |              |              |                                       |               |              |              |              |              |                    |              |                  |                |              |             |               |
|                                                                       |                           |              |         |              |              |              |                                       |               |              |              |              |              |                    |              |                  |                |              |             |               |
|                                                                       |                           | 8C1B         | 8 A     | 502          | 5E           | 8D 5         |                                       | BAIA          | 6N18         | 601B         | 6P 1 A       | 6Q1A         | 611A               | 6J 1A        | 6K1A             | 6L l A         | 6M 14        | 4F 1        | 4F2           |
| РТН                                                                   | 8E 1                      | PH           | H20     | ESP          | SAR          | TOTL         |                                       | AMHOS/        |              |              |              |              | C 03               |              |                  |                | ND3          | LOID.       |               |
| PTH                                                                   |                           |              |         | PCT          |              |              |                                       | CM (          |              |              |              | MEQ /        | LITER              |              |                  |                | )            | PCT         |               |
|                                                                       | 8E1<br>REST               |              | PCT     |              |              |              |                                       |               |              |              |              |              |                    |              |                  |                |              |             |               |
| PTH<br>CM                                                             | 8E1<br>REST<br>OHM-<br>C# |              | PCT     |              |              |              |                                       |               |              |              |              |              |                    |              |                  |                |              | 3/5         |               |
| CM<br>00-010                                                          | BEI<br>REST<br>OHM-<br>CM |              | PCT     |              |              |              |                                       |               |              |              |              |              |                    |              |                  |                |              |             | . 12          |
| CM<br>00-010<br>0-018<br>8-038                                        | BEI<br>REST<br>OHM-<br>CM |              | PCT     |              |              |              |                                       |               |              |              |              |              |                    |              |                  |                |              | 36E<br>35E. |               |
| CM<br>00-010<br>00-018<br>8-038<br>8-048<br>8-058                     | 8E1<br>REST<br>OHM-<br>CM |              | PCT     |              |              |              |                                       |               |              |              |              |              |                    |              |                  |                |              | 35E         | 13            |
| CM<br>00-010<br>0-018<br>8-038<br>8-048<br>8-058<br>8-071<br>(1-084   | 8E1<br>REST<br>OHM-<br>CM |              | PCT     |              |              |              |                                       |               |              |              |              |              |                    |              |                  | <br>           |              | 35E<br>58È  | 13            |
| 0-010<br>0-010<br>0-018<br>8-038<br>8-048<br>8-058<br>8-071<br>(1-084 | 8E1<br>REST<br>OHM-<br>CM |              | ****    |              |              | 100          | · · · · · · · · · · · · · · · · · · · | 0.27          |              | _            |              |              |                    |              |                  | ,              |              | 35E         | 33            |

<sup>(</sup>A) FE/MN NODULES COMPRISE MORE THAN 75 PCT OF THE SAND.

(B) BULK DENSITY ESTIMATED FOR HORIZON FROM 119-145 CM.

(C) MICRO-PENETRATION RESISTANCE - A ROD O.6 CM DIA IS SLOWLY PUSHED INTO BULK DENSITY CLOO, EQUILIBRATED AT 1/10- BAR,

A DISTANCE OF O.6 CM USING A POCKET PENETROMETER. UNITS ARE FORCE (KG) AND NOT ESTIMATES OF UNCONFINED COMPRESSIVE
STRENGTH.

(D) ORGANIC CARBON IS 9 KG PER SQ M TO A DEPTH OF L METER LMETHOD 6A).

(E) BY IOWA HWY DEPT. AMES IOWA.

Pedon classification: Aquic Hapludalf; fine, montmorillonitic, mesic.

Series classification: (Same as pedon).

Soil: Weller silt loam.

Soil no.: S69-Iowa-68-1 (LSL Nos. 69L1041 - 69L1051) .

Location: Monroe County, Iowa, 510 feet south and 155 feet west of the gate along road in SW4 Sec. 2 or 1,190 feet north and 830 feet west of SE corner of SW 4, Sec. 2, T. 71 N., R. 18 W.

Vegetation and land use: Improved bluegrass pasture; recently cleared forested land.

Parent material: Deoxidized-leached and oxidized-leached loss (Wisconsin) low in sand (less than 5 percent).

Physiography: Convex summit of a gently sloping extended interfluve. Breaks sharply to E and F slopes (14 to 24 percent) to the west, east, and south.

Relief: Gently sloping interfluve with a south axis.

Slope: 3 percent south facing.

Drainage: Moderately well drained.

Ground water: None observed.

Permeability: Slow.

Described by: J. D. Highland, J. R. Culver, and T. E. Fenton; November 6, 1969.

(Colors for moist conditions unless otherwise stated)

Al 69L1041 0 to 10 cm (0 to 4 inches). Very dark gray (10YR 3/1) silt loam, very dark grayish brown (10YR 3/2) crushed, some mixing of grayish brown (10YR 4/2), gray (10YR 6/1) dry; weak coarse platy structure; friable; few soft dark reddish brown (10YR 2/2) oxides; many fine roots; slightly acid; clear wavy boundary.

A21 69L1042 10 to 18 cm (4 to 7 inches). Brown (10YR 4/3) silt loam, dark grayish brown (10YR 4/2) coatings on plates; moderate thin platy structure; friable; common fine soft dark reddish brown (5YR 3/2) oxides; very strongly acid; clear smooth boundary.

A22 69L1043 18 to 38 cm (7 to 15 inches). Yellowish brown (10YR 5/4) silt loam, brown (10YR 5/3) coatings on plates; weak medium platy structure; friable; few dark gray (10YR 3/1) wormcasts; very strongly acid; clear smooth boundary.

AB 69L1044 38 to 48 cm (15 to 19 inches). Yellowish brown (10YR 5/4) light silty clay loam; brown (10YR 5/3) coatings on peds; moderate fine angular and subangular blocky structure; friable; thin discontinuous light gray (10YR 7/1 dry) silt coats on peds; very strongly acid; clear smooth boundary.

B1 69L1045 48 to 58 cm (19 to 23 inches). Yellowish brown (10YR 5/4) medium silty clay loam, grayish brown (10YR 5/2) coatings on peds; strong fine and very fine angular and subangular blocky structure; firm; thin discontinuous dark gray (10YR 4/1) clay films on faces of peds; thick continuous light gray (10YR 7/1 dry) silt coats on peds; few soft dark brown (7.5YR 4/4) oxides; very strongly acid; abrupt smooth boundary.

B21t 69L1046 58 to 71 cm (23 to 28 inches). Mottled yellowish brown (10YR 5/4) and grayish brown (10YR 5/2) medium silty clay; yellowish brown (10YR 5/4) kneaded; common fine distinct strong brown (7.5YR 5/6) mottles; moderate fine angular and subangular blocky structure; firm; thick discontinuous dark gray (10YR 4/1) clay films on faces of peds; light gray (10YR 7/1) silt coats on peds in upper inch; few very fine soft dark brown (7.5YR 3/2) oxides; very strongly acid; gradual smooth boundary.

B22t 69L1047 71 to 84 cm (28 to 33 inches). Colors same as above; medium silty clay; moderate fine and medium angular and subangular blocky structure; firm; moderately thick discontinuous dark gray (10YR 4/1) clay films on faces of peds; few fine soft dark reddish brown (5YR 3/2) oxides; very strongly acid; gradual smooth boundary.

B23t 69L1048 84 to 97 cm (33 to 38 inches). Mottled grayish brown (2.5Y 5/2) and yellowish brown (10YR 5/6) heavy silty clay loam; common fine distinct strong brown (7.5YR 5/6) mottles; weak fine and medium angular and subangular blocky structure; firm; thin discontinuous dark gray (10YR 4/1) clay films on faces of peds; few fine soft dark reddish brown (5YR 3/2) oxides; very strongly acid; gradual smooth boundary.

B31t 69L1049 97 to 119 cm (38 to 47 inches). Mottled olive gray (57 5/2) and yellowish brown (10YR 5/6) medium silty clay losm; common medium distinct strong brown (7.5YR 5/6) mottles; weak coarse prismatic structure parting to weak medium subangular blocky; deoxidized and leached weathering zone; thin discontinuous clay films; many fine soft dark reddish brown (5YR 3/2) oxides; strongly acid; gradual smooth boundary.

B32 691.1050 119 to 145 cm (47 to 57 inches). Colors same as above; medium silty clay loam; weak coarse prismatic structure; deoxidized and leached weathering zone; firm; thin discontinuous clay films; few thin discontinuous light gray (10YR 7/1 dry) silt coats on prisms; common medium dark reddish brown (5YR 2/2) oxides; common fine soft Fe-Mn oxides; medium acid; gradual smooth boundary.

C 69L1051 145 to 175 cm (57 to 69 inches). Grayish brown (2.57 5/2) light silty clay loam; many fine and medium distinct yellowish brown (10YR 5/6) mottles; weak coarse prismatic structure; firm; deoxidized and leached weathering zone; few thin colloidal clay coatings on vertical prism faces; many fine soft dark reddish brown (5YR 3/2) oxides; few to common fine soft Fe-Mn oxides; slightly acid.

|                         | s <u>-</u> -     | _               |              | - WI         | ELLE         | R             |                 |                |                    | MESTO         |                   | _                          |             |                      |                   |                    | \$0                   | IL SU      | NEBRA                | IVEST LO                   |              | MRTSC<br>UNIT     |
|-------------------------|------------------|-----------------|--------------|--------------|--------------|---------------|-----------------|----------------|--------------------|---------------|-------------------|----------------------------|-------------|----------------------|-------------------|--------------------|-----------------------|------------|----------------------|----------------------------|--------------|-------------------|
| SOIL                    |                  |                 |              |              |              |               |                 |                |                    |               | LUCA:             | S<br>.E <u>.NO</u> S.      | 69L10       |                      |                   |                    |                       |            |                      |                            |              |                   |
|                         |                  |                 |              |              |              |               |                 |                |                    |               |                   |                            |             |                      |                   |                    |                       |            |                      |                            |              |                   |
| DEP1                    | 'H I             | IOR I I         | ON.          |              |              |               |                 | F              | INF                | (             |                   | SAND -                     |             | 1                    | (                 | -SILY-             | )                     | FAMI       | INTR                 | FINE                       | NON-         | 801               |
|                         | <b></b>          |                 |              | د            | ANU<br>2     | 05            | LJ              |                | LAY<br>LI.<br>Onno | -2=           | 1                 | MEDS<br>                   | 25-         | -10                  | 05                | 402                | -005-                 | SAND       | .02                  | CLAY                       | CT TA        | BAR<br>TO         |
| . CM                    |                  |                 |              | 1-           |              |               |                 |                |                    |               |                   | - PCT                      | LT 2        | м                    | <del>-</del> -    | + .= =             |                       |            | <u>-</u>             |                            | PCT          | CLAY              |
| 000~0                   | 18.              | AP<br>AZ        |              | 2.           | - 08<br>- 98 | 78.1          | 19.<br>24.      | 9              | 7.8                | TR<br>TR      | .2<br>.3          | -4                         | . B         | .5                   | 32.3              | 45.8<br>43.7       |                       | 1.4        | 33.3                 | 3 g<br>4 3                 |              | .40               |
| 030-0                   | 38.              |                 |              | . 1          | 6B.          | 67.2          | 31.<br>37.      | 2 1            |                    |               | 2                 | 4                          |             |                      | 24.A.<br>23.3     | 42-4               |                       | 1.2        | 25.5.                | 50                         | _            | .42               |
| 046~0                   | 164              | 8211<br>8221    |              |              | - 8 B        | 52.0          | 47.<br>43.      | 2 2            | 9.1<br>6.7         | ٥.            | .1                | -1                         | . 3         | .3                   | 18,5              | 33.5<br>35.1       |                       | 45<br>5.   | _18.9.<br>21.2       | 62                         |              | 45<br>-47         |
| .086~1                  | 40               | 8311<br>8321    | r            |              | -7B          | 62.6          | 39.             | 7 2            | 2.9<br>0.8         | .0            | .1.               | .1                         | .2          | . 3                  | 21.8              | . 35.8<br>40.8     |                       |            | 24 <u>.0</u><br>22.2 | 57                         |              | -47<br>-48        |
| <u>140-1</u><br>000-0   | 10               |                 | (A)          | 2.           | . 3B         | 80.0          |                 | . 7            | 6.4                | -1            | .4                | . 4                        | • 7         | 3.                   | 33.9              | 46.l               |                       | 1.6        | 35.0                 | <u>61</u><br>36            |              | -49               |
| 020~0                   |                  | A21<br>A22      |              |              |              | 80.0<br>78.0  |                 |                | 6.6<br>7.0         | •1<br>•1      | .2                | .3<br>.2                   | .4          |                      | 33.1<br>32.0      | 46.9<br>46.0       |                       |            | 34.0                 | 34                         |              | .33               |
| DEPTH                   |                  | RTIC            | IF S         | 17F          | ANA          | 1275          | . MM.           | 38.            | 387                | - 382         |                   | N DENC                     |             |                      |                   | e co               | TENTET                |            | AVATY                |                            | (P)          |                   |
|                         | _V(              | )L. 1           | <br>GT       |              | <br>5-20     | - WE          | IGHT<br>5-2     |                | <br>LT             | 20-2          | 4A1D              | K DENS<br>4Alh<br>OVEN     | 401<br>COLE | 4B1C                 | 481C              | 4B2                | 4G1 .                 |            | PG<br>LBS/A          | CHE.                       | 8C1A         |                   |
| CM                      | 2.<br>PC         | :T              | 75<br>PCT    | 1-           |              | PĊT           | LŤ 75           |                | 974,               | PCT<br>LT20   | .BAR<br>G/CC      | DVEN<br>DRY<br>G/CC        |             | BAR                  | BAR               |                    | _CMZ                  |            |                      |                            | HZÒ          | CACI              |
|                         |                  |                 |              |              |              |               |                 |                |                    |               |                   |                            |             |                      |                   |                    | · · ·                 |            |                      |                            |              |                   |
| 000-0                   | 30               | 0               | 0            |              | 0            | 0             | 0               | l .            | 99<br>98           | 0             | 1.41              | 1.51                       | -014        | 29.1<br>27.3         | 24.4              | 9.4                | •26<br>•22            |            | 7.0<br>5.5           |                            | 5.0<br>4.7   | 4.6<br>4.1        |
| _030~0                  | 46               | 0 -             | <u>.</u>     |              | 0 -          | <u>0</u> _    |                 |                | 99<br>99           | Q             | 1.42              | 1.72                       | .066        | 26.3.<br>29.8        | 28.3              | 15.7               | .18                   | 2.30       | - 8.0<br>18.0        |                            | 4.5          | 4-1               |
| 046-0<br>064-0<br>086-1 | 86               | 0               | 0            |              | 0            | 0             | 0               | 1              | 99<br>99<br>99     | Q             | 1.41              | 1.87                       | .099        | 36.5<br>32.5         | 33.9              | 20.2               |                       | 1.70       |                      |                            | <u>A.S</u> _ | 4.1               |
| 109-1                   | 40               | ŏ               | 0            |              | ō            | 0             | 0               | 1              | 00<br>00           | ٥             | 1.400             | 1.74<br>1.73               | .070        | 31.6                 | 30.2              | 17.7               | -16                   | 1.30       | .53.0<br>37.5        |                            | 5.0<br>5.5   | 4.2<br>4.5<br>5-0 |
| 010-0                   | 10               | Ŏ<br>Q          | ò            | ,            | 0            | Ö             | Ö               |                | 98<br>99           | ō             |                   |                            | . 4.00      |                      |                   | 7.1                |                       | -, <u></u> |                      |                            | 5.5<br>4.A   | 5.2               |
| 020-0                   |                  |                 | ō            |              | ō            | TR            | Ċ               | ,              | 99                 | TR            |                   |                            |             |                      |                   | 6.9                | -                     |            | -                    |                            | 4. 4         | 4.0               |
| DEPTH                   | (ORC             | ANIC            | MAT          | TER          | ```          | I RON         | PHOS            | . (+           |                    | TR ACT        | ABLE BA           | LSES 58                    | 4A1         | ACTY                 | AL                | (CAT               | EXCH)                 | RATIO      | RATIO                | CA.                        | (BASI        | SAT)              |
| -                       | 6.6<br>DR        | GN              | 681A<br>NITO |              | ./N          | 6C2A          | 451             | Δ 6            | N2E                | 6020          | 6P2A              | 692A<br>K                  | SUM.        | SACL                 | KCL               | - 5A3A             | _5A6A_                | ADL .      | - BD3                | SAT                        | SC3<br>EXTB  |                   |
| ćy                      | · CA             | RB<br>T         | PCT          |              |              | PCT           | PCT             | ·-(-           |                    | <del></del>   |                   | нео                        | / 100       | JEA.                 | EXT               | ACTY               |                       | <u>TO</u>  | MG.                  | NHAC<br>PCT                | PCT          | PCT               |
| 000-0                   |                  | 145             |              |              |              | 0.7           |                 |                |                    |               |                   |                            |             |                      |                   |                    |                       |            |                      |                            |              |                   |
|                         | 30 0             | 30              | -04          | 3            | 7            | 0.8           |                 |                | 5.7<br>3.7         | 1.8<br>2.7    | 0.2<br>0.2<br>0.3 | 0.3                        | 6.9         | 9.4<br>10.4<br>.13.2 |                   | 17.3               | 13.3<br>13.4<br>18.3. | 0.55       | 3.2<br>1.4<br>1.1    | - <b>43</b> -<br>28<br>27- | 40           | 51<br>57          |
| 038-0                   | 46 0.            | 24              | .04          | 2            | 6            | 1.2           |                 |                | 6.6                | 6.4           | 0.4               |                            | 14.0        |                      | 4.9               | 29.2               | 23.4                  | 0.63       | 1.0                  | 28                         | 46           | 60                |
| 064~0<br>086~1          | 86 0.            | 12<br>11        |              | -            |              | 1.3           |                 | 1              | 1.8                | 9.9<br>9.8    | 0.9               | 0.8                        | 23.4        | 17.0                 | 4.2               | 40.4               | 31.8                  | 0.73       | 1.2                  | 37                         | 58           | 74<br>76          |
| 109~1<br>               | ZO D.            | 16.             | <b>.</b>     |              | ·            | 1.3<br>1.1    |                 | . 1            |                    | 10.0          | 1.1               | 8.0<br>8.0                 |             | 9.1<br><i>I</i> 5    |                   |                    | 28.4<br>              |            | 1.3                  | 45                         | 73<br>77     | 87<br>93          |
| 010-0<br>020-0          | 20 0.            | 56              |              |              |              |               |                 |                |                    |               |                   |                            | -           |                      | -                 |                    |                       | -          |                      |                            |              |                   |
| 020-0                   |                  |                 |              |              |              |               |                 |                |                    |               |                   |                            |             |                      |                   |                    |                       |            |                      |                            |              |                   |
| DEPTH                   |                  | TURA<br>1 8     |              | 8/           | ٤, ``        | NA<br>DZ_     | NA<br>5E        | S.A.1          | LT (               | GYP (<br>6Fla | BA1A              | 6N1B                       | 6D1B        | SATURA<br>6P1A       | TION E            | XTRACT             | 8A1-                  |            | 6114                 | 1                          | ATTERN       | FRG               |
|                         | . DH             |                 | PH<br>       | H20          |              | SP            | SAR             |                | <br>               |               | MHOZY.            | CA                         | MG          | NA                   | K                 | CO3                | HC 03                 | CL.        | S04                  | EDN                        | 1181         | PLST              |
| . СМ                    | С                | м               |              | PCT          | •            | PC T          |                 | PP             | 4 1                | PCT           | CH (              |                            |             |                      | MEQ /             | LITER              |                       |            | - <del></del>        | )                          | PCT          |                   |
| 000-0                   | *                |                 |              |              |              |               |                 |                |                    |               |                   |                            |             |                      |                   |                    |                       | -          |                      |                            | 3 LE         | 7_                |
| 030-0                   | 38               | -               |              |              | -            | * * * * *     |                 |                | -                  |               |                   |                            |             |                      |                   |                    |                       |            | _                    |                            | 33F          | 11                |
| 046-0                   | 64               |                 |              |              |              |               |                 |                |                    |               |                   |                            |             |                      |                   |                    |                       |            |                      |                            | 65E          | 37                |
| 086-1:<br>109-1         | 09 3             | 000             | 4.2          | 57           | . 7          |               |                 |                | 52                 |               | 0.14              |                            | -           | -                    |                   |                    |                       |            | -                    |                            | 51F          | 28                |
| 14.9=1<br>000-0         | ZΩ -             |                 |              | ••           |              |               | 1               |                |                    |               |                   | <del>.</del> .             |             |                      |                   |                    |                       |            |                      |                            | 715          | 40                |
| _010-0:<br>020-0:       | 20<br>30         |                 | -            |              |              |               |                 | -              |                    |               |                   |                            |             | -                    |                   | ٠.                 |                       |            |                      |                            |              |                   |
| CLAY I                  |                  |                 |              |              |              |               | PLACE           | ENENT          |                    | 91A-5         | 9+1) M            | ONTHORI                    | LLONT       | 16.                  |                   |                    |                       |            |                      |                            |              |                   |
| 018-<br>046-            | -30<br>-64       | -KK             | 3 M          | 3            | MT2          | VM2<br>Q21.   | QZ1.            |                |                    |               | "                 | -                          |             |                      |                   |                    |                       |            |                      |                            |              |                   |
|                         | 4E MT S.         | ~               | AVE          | MEI          | 1 00         | DEBER         | L EVP           | EPT P          | OORL               | V 000         | <br>ERED M        | ÖNTMORI                    | LLONI       | re In /              |                   | - 30C M )          | •                     |            |                      |                            |              |                   |
| MIN                     | RAL              | AMDI<br>ODE:    | JN TS        | =_1          | X-RA<br>MONT | Y) 5<br>Morti | . DON!          | HIN            | MT                 | 4 A           | BUNDAN            | T 3 =                      | MODERA      | TE 2                 | - ŞMAI<br>OR I TE | VH -               | TRACE                 | LITE       | IAL A                | PERC!                      | ENT.         |                   |
| THE AL                  | LAC              | SCI             | AV F         | ÎĹM          | \$.          | THE B         | 1 CO            | TAIN           | SA                 | FEN C         | LAY FI            | LMS AND                    | THEY        | ARE CO               | MMON              | IN THE             | 821T.                 | REMO       | VAL OF               | CLAY                       | FROM N       |                   |
| TERMI!                  | OLOG             | .E.3 /<br>/, T/ | RE AS        | INDA<br>INDA | ASE          | PIC,          | THE I           | 15 Kt<br>31 15 | INS                | EPIC,         | AND T             | EXPRESS<br>HE B211         | ED IN       | THE BI               | TATE I            | D. MEAK.<br>Betwee | N VOSE                | IC AN      | IN TH                | Bl.                        | IN ARES      | OF                |
| SEGRE                   | DITA             | IS (            | SLAEE        | ULE          | S) M         | OSTLY         | CIRC            | ULAR           | IN                 | CROSS         | SECTI             | ON ARE                     | COMMON      | THE                  | DEPARE            | ETER O             | F MOST                | EXCEE      | DS 0.05              | HH H                       | TH AN        | EH                |
|                         |                  |                 |              |              |              |               |                 |                |                    |               |                   | SEGREGA<br>CLAY.<br>D B21T |             |                      |                   |                    |                       |            |                      |                            |              |                   |
| AMOUNT                  | DRO              | S TO            | ALISE        | ERC          | ENT<br>THE   | IN TH         | IE LOI<br>L AAF | ER P           | ART.               | THE           | Bl ANI            | D BELLY.<br>BSERVED        | CONTA       | N 2 TO               | 7 6 PE            | RCENT.             | THESE                 | PERC       | ENT AGES             | HAVE                       | A LAR        | 1E<br>SE          |
| (A) 5/                  | MPLEC<br>ZMN 1   | ) 32<br>100UL   | .ES C        | ST (         | OF 5<br>Rise | 9-1.<br>More  | THAN            | 75             | РСТ                | OF THI        | SAND.             |                            | ·           |                      |                   |                    |                       |            |                      |                            |              | -                 |
| (B) FE                  |                  |                 | ~            | - · · · ·    |              | COR           |                 | ·              |                    | 04 101        |                   |                            | -           | -                    | ,                 |                    |                       |            |                      |                            |              |                   |
| (E) BU                  | ILK DE<br>IECRO- | PËNË            | TRAT         | 100          | RES          | ISTAN         | CÉ -            | A RO           | D A.               | A CH I        | 21 AIC            | SLOWLY<br>UNITS            | pijeus      |                      | 91112             | DEMET              |                       | FAI        |                      | en                         | 1710         | B 40              |

Pedon classification: Aquic Hapluda'f; fine, montmorillonitic, mesic.

Series classification: (Same as pedon) .

Soil: Weller silt loam.

Soil no. # S69-lowa-59-1 (LSL Nos. 69L1052 - 69L1063)

Location: Lucas County, Iowa, 400 feet south and 100 feet west of the NE corner of the NW, NW% Sec. 9, T 72 N., R 20 W.

Vegetation and land use: Pasture; area formerly in large, deciduous trees.

Parent material: Demxidized-leached and oxidized-leached (Wisconsin) losss low in sand, less than 5 percent. Physiography: Convex south facing interfluve adjoining stable, nearly level loess-covered Kansan and Nebraskan till. Breaks to 9 to 24 percent slopes on backslope below summit.

Relief: Gently sloping upland interfluve.

Slope: 3 percent, south aspect.

Drainage: Moderately well drained.

Bround water: None.

Permeability: \$1ow. Described by: J. D. Highland, J. R. Culver and T. E. Fenton; November 6, 1969.

(Colors for moist conditions unless otherwise stated)

Ap 69L1052 0 to 18 cm (0 to 7 inches). Dark grayish brown (10YR 4/2) and 30 to 40 percent mixing of brown (10YR 5/3); silt loam; light gray (10YR 7/2) dry; weak to moderate thin platy structure; friable; common very fine soft dark reddish brown (5YR 3/2) oxides; strongly acid; abrupt smooth boundary.

18 to 30 cm (7 to 12 inches). Brown (10YR 5/3) silt loam, very pale brown (10YR 7/3) dry; kneaded brown (10YR 5/3); moderate medium platy structure; friable; discontinuous grayish brown (10YR 5/2) coatings on plates; few very fine soft dark reddish brown (5YR 3/2) oxide concretions; very strongly acid; clear smooth boundary.

AB 69L1054 30 to 38 cm (12 to 15 inches). Yellowish brown (10YR 5/4) medium silty clay loam; discontinuous grayish brown (10YR 5/2) coatings on peds; moderate fine subangular blocky structure; friable; few very fine soft dark reddish brown (5YR 3/2) oxides; few thin patchy light gray (10YR 7/1) dry silt coats; very strongly acid; clear smooth boundary.

B1 691,1055 38 to 46 cm (15 to 18 inches). Yellowish brown (10YR 5/4) heavy silty clay loam; grayish brown (10YR 5/2) coatings on peds; kneaded yellowish brown (10YR 5/4); moderate to strong subangular blocky and angular blocky structure; friable to firm; nearly continuous horizontal band of light gray (10YR 7/1 dry) silt coats; few very fine soft dark reddish brown (5YR 3/2) oxides; very strongly acid; abrupt smooth boundary.

B21t 69L1056 46 to 64 cm (18 to 25 inches). Yellowish brown (10YR 5/4) medium silty clay; brown (10YR 5/2) coatings on peds; kneaded yellowish brown (10YR 5/4); few fine distinct grayish brown (2.5Y 5/2) mottles; moderate very fine and fine subangular and angular blocky structure; very firm; continuous moderately thick clay films; few very fine soft dark reddish brown (5YR 3/2) oxides; very strongly acid; gradual smooth boundary.

B22t 691.1057 64 to 86 cm (25 to 34 inches). Yellowish brown (10YR 5/4) light to medium silty clay; discontinuous grayish brown (10YR 5/2) coatings on peds; kneaded yellowish brown (10YR 5/4); few fine faint grayish brown (2.5Y 5/2) and few fine distinct dark brown (7.5YR 4/4) mottles; weak very fine subangular blocky structure; very firm; continuous clay films; common fine soft dark reddish brown (5YR 2/2) oxides; very strongly acid; gradual smooth boundary.

B31t 69L1058 86 to 109 cm (34 to 43 inches). Mottled yellowish brown (10YR 5/6), dark yellowish brown (10YR 4/4) and grayish brown (2.5Y 5/2) light silty clay; weak fine and medium subangular blocky structure; firm; continuous clay films; common fine soft dark reddish brown (5YR 2/2) oxides; strongly acid; gradual smooth boundary.

109 to 140 cm (43 to 55 inches). Mottled grayish brown (2.5Y 5/2) and yellowish brown (10YR 5/6); brown (10YR 5/3) coatings on peds; heavy silty clay loam; few fine prominent strong brown (7.5YR 5/6) mottles; weak medium subangular blocky structure; firm; nearly continuous clay films; few fine soft reddish brown (5YR 4/4) oxides; few thin discontinuous light brownish gray (10YR 6/2) silt coats mainly on vertical ped faces; mottled deoxidized and leached weathering zone; strongly acid; diffuse smooth boundary.

B33t 69L1060 140 to 170 cm (55 to 67 inches). Color same as above; medium silty clay loam; weak medium subangular blocky structure; firm; thin discontinuous clay films; few clay-lined and filled old channels; mottled deoxidized and leached weathering zone; medium acid.

Remarks: Al and A2 mixed by plowing. Satellite site 105 feet east of principal site from which samples of A1, 0-4 in.; A21, 4-8 in.; and A22, 8-12 in. were collected.

Satellite Weller site 105 feet east of prime site under oak trees:

0 to 10 cm (0 to 4 inches). Very dark gray (10YR 3/1) silt loam, gray (10YR 6/1) dry; moderate thin platy structure; friable; common very fine soft dark reddish brown (5YR 3/2) oxides; many fine roots; medium acid; abrupt smooth boundary.

A21 69L1062 10 to 20 cm (4 to 8 inches). Dark grayish brown (10YR 4/2) silt loam; light gray (10YR 7/2) dry; kneaded grayish brown (10YR 5/2); moderate thin platy structure; friable; common very fine soft dark reddish brown (5YR 3/2) oxides; very strongly acid; clear smooth boundary.

A22 69L1063 20 to 30 cm (8 to 12 inches). Brown (10YR 5/3), thin discontinuous grayish brown (10YR 5/2) coatings on plates silt loam; very pale brown (10YR 7/3) dry, kneaded brown (10YR 5/3); moderate medium platy structure; friable; few very fine soft dark reddish brown (5YR 3/2) oxides; many fine roots; very strongly acid; clear smooth boundary.

| SERIES -          | <u></u>   | <u>žook</u>        |              |        | NITIC,  |               |           | —<br>!     |             |                           |      |        | SQ    | IL CON<br>IL <u>SUR</u><br>NCOLN, | VEY IN    | VEST LO |      |             |
|-------------------|-----------|--------------------|--------------|--------|---------|---------------|-----------|------------|-------------|---------------------------|------|--------|-------|-----------------------------------|-----------|---------|------|-------------|
|                   | METHODS-  |                    |              |        |         |               |           |            | . 71L11     | 64-71L                    | 1171 |        | 00    | TOBER 1                           | 974       |         |      |             |
| DEPTH             | HORI ZON  |                    |              |        |         | L ++_=        | <u></u>   | SAND -     | <u> </u>    | . <del>-</del> <u>- )</u> | (    | ·SILT- | )     | FAML                              |           |         |      |             |
|                   |           |                    |              |        | CLAY    |               |           |            |             |                           |      |        |       |                                   | 11        |         | C03- |             |
|                   |           | -05                |              | L†     | .0002   | 2-            | 1-<br>-5  | •5-<br>•25 | -25-<br>-10 |                           | -05  |        | -005- |                                   |           | CLAY    | CLAY | TO          |
| CM                |           | {                  |              |        |         |               | . <u></u> |            |             |                           |      |        |       |                                   |           |         | PCT  |             |
| 000-18            |           |                    |              |        | 22.4    |               |           | - 2        | 1.0         |                           |      | 43.7   | 10.5  | 1.3                               | 17.2      | 58      |      |             |
| 018-30            | -AP       | 3.5A               | 58.2<br>51.1 |        | 26.6    | TR            |           | .3         | 2.0         |                           | 11.5 |        | 10.5  |                                   | 14.9      | 60      |      | -:-         |
| 030-48            | A13       | 5.0A               |              | 44.0   |         | ŤŔ            |           | .4         | 2.2         |                           | 10.9 |        | 11.3  | 2.7                               |           | 60      |      |             |
| 048-66            | A14       | 5.4A               |              | 41.8   |         | -1            |           |            | 2.5         |                           | 12.4 |        | 10.9  | 3.1                               |           | 64      |      | .4          |
| 066-94            | A15       | . 8-1A             | 51.6         | 40.3   |         | JR,           |           | 6          | 4.0         |                           |      | 39.7   |       |                                   | 17.6      | 62      |      | .4          |
| 094-122           | AC        | 8.0A               | 51.7         |        | 25.4    | TR            | -1        | .6         | 3.9         |                           | 11.9 |        | 10.5  |                                   | 17.6      | 63      |      | -4          |
| 122-145           | <u> </u>  | 10.0A              |              |        |         | • <u>\$</u> . | <u>1</u>  | 9          | 5.2         |                           |      | 37.8   |       |                                   | 19.0      | _ 51    |      | -4          |
| 145-191           | C2G       | 11-4A              | 52.6         | 36.0   | 19.5    | -3            | -6        | 1.0        | 5.2         | 4.3                       | 13.0 | 39. 6  | 10.3  | 7.1                               | 20.3      | 54      |      | -4          |
|                   | PARTICLE  | ****************** |              |        |         | 303           |           | V DEM      |             | <u></u>                   |      |        | TENT. |                                   | C 4 0 0 0 | WATE    | / P/ | <del></del> |
|                   | VOL. (- + |                    |              |        |         |               |           |            |             |                           |      |        | 4C1   | .==2                              | 6E1B      |         | BCIA |             |
|                   |           | 75-2 <u>0</u>      |              |        |         |               |           |            |             |                           |      |        | WRD   |                                   | LT        | LT      | 1/1  | 1/2         |
|                   | 2 75      |                    |              |        | -074    | PCT           | 'BAR      | DRY        |             | BAR                       | BAR  | BAR    | CM/   |                                   | 2         | .002    | HZO  | C AC        |
| CM                | PCT PCT   | (                  | PÇT L        | T 75 - | _= =.). | LTZO          | G/CC      | G/CC       |             | PCT                       |      | PCT    | CM    |                                   | PCT       | PCT     |      |             |
| 000-18            | 0 0       | 0                  |              | 0      | 98      | 0             | 1.45      | 1.72       | .059        |                           |      |        |       | 3.8C                              |           |         | 5.4  | 5.          |
| 016-30            | o o       | Ō                  | ō            | 0      | 97      | Ō             | 1.39      | 1.76       | .082        | 28.5                      | 27.6 | 19-6   | .11   | 4.8C                              |           |         | 5.4  | 5,4         |
| 030-48            | 0 0       | 0                  | 0            | 0 _    | 96      |               | 1.408     |            |             |                           |      | 20.0   |       |                                   |           |         | 5.9  | <u> 5</u> , |
| 048-66            | 0 0       | 0                  | 0            | 0      | 96      |               | 1.43      | 1.80       | -080        | 29.8                      | 27.3 |        | -12   | 3.60                              |           |         | 5.8  | 5.          |
| 066-94<br>094-122 | 0 0       | 0                  | 0 -          | 0      | 94      |               | 1.40B     |            |             | ***                       |      | 17.5   |       | 1.70                              |           |         | 6.1  | 5.<br>5.    |

73=

|         | GALA   |          |        |            |           | 6NZE           |        |            | 6Q2A                                         |              | PHIV     |        |         | SAGA   | BDI     | 803            | 5F       | 503    | 5C.1   |
|---------|--------|----------|--------|------------|-----------|----------------|--------|------------|----------------------------------------------|--------------|----------|--------|---------|--------|---------|----------------|----------|--------|--------|
|         | DRGN   |          |        | EXT        | TOTL      | CA             | MG     | NA         | <u> </u>                                     | SUM          | BACL     |        | EXTB    | _ NHAC | NHAC    | - CA<br>TO     | SAT_NHAC | EXTB   | NHĀ    |
| CM      | CARB   | PCT      |        | FE         | PCT       | (              |        |            | MEG                                          | EXTB         |          | EXT    | ACTY    | ;      | CLAY    | MG             | PCT      | PCT    | PCT    |
|         |        |          |        |            |           |                |        |            |                                              |              |          |        |         |        |         |                | 61       | 72     | B      |
| 000-18  |        |          |        |            |           | - 19.7<br>24.2 |        | -1         | .5                                           | 26-1<br>31-8 | 10.3     | TR     |         | 32.5   | .85     | 3.5            | 65       | 77     | 8      |
| 018-30  |        | -166     |        |            |           | 25.0           | 7.5    | ::         | .5                                           |              | 8.8      | **     | 41.9    | 36.2   |         | 3.3            | 69       | 79     |        |
| 048-66  |        | .095     |        |            |           | 23.7           | 7:3    | • • • • •  |                                              |              | 7.5      |        | 39.2    |        |         |                | 69       | 81     | 9      |
| 066-94  |        | .072     |        |            |           | 23.1           | 7.4    |            |                                              |              | 5.9      |        |         | 32.9   | .62     | 3.1            | 70       | 84     | ģ      |
| 094-122 |        | .054     |        |            |           | 22.7           | 7.6    | 2          |                                              |              | 4.8      |        | 35.9    |        |         |                | 70       | 87     | 9      |
| 122-14  |        |          |        | . 7        |           | 21.0           | 7.2    | .2         |                                              |              | 5.1      |        | 34.1    | 30.4   | .76     | 2.9            | 69       | 85     | 9      |
| 145-191 |        |          |        | •9         |           | 18.1           | 6.5    | .2         | .7                                           | 25.5         | 5.1      | •      | 30.6    | 27.4   | - 76    | 2.8            | 66       | 63     | 9      |
|         |        |          |        |            |           |                |        |            |                                              |              |          |        |         |        |         |                |          | ATTERE | ER CE  |
| DEPTH_  |        | RATED    |        | -NA        | <u>NA</u> | SALT           | GYP    | <u> </u>   | 7075                                         | 4010         | 6P1A     | 601A   | EXTRAC' | 6JIA   |         | 6LLA           |          | 4F1    |        |
|         |        | 8C 15    | 8A     | 5D2<br>ESP | S AR      | BD5<br>TOTL    | 6F1A   | 841A<br>EC | 6NIB<br>Ca                                   | 6018<br>MG   | NA<br>NA | K      | COS     | HC 03  | CL      | SO4            | NO3      | LOID   |        |
|         | REST   | PH       | HZO    | F2h        | 3 pK      | SOLU           |        | 120HM      |                                              | по           | ITA      |        | COS     | 10.05  |         | 307            | , i      | LMIT   |        |
| CM      | OHM-   |          | PCT    | or t       |           | PPM            | PCT    | CM.        |                                              |              |          | - MFQ  | / LITE  |        | <b></b> |                | )        | PCT    |        |
|         |        |          |        |            |           |                |        | × 57.      | <u>`                                    </u> |              |          |        |         |        |         | ===            |          |        |        |
| 000-18  |        |          |        |            |           |                |        |            |                                              |              |          |        |         |        |         |                |          | 60     | 31_    |
| 018-30  |        |          |        |            |           |                |        |            |                                              |              |          |        |         |        |         |                |          |        |        |
| 030-48  |        |          |        |            |           |                |        |            |                                              |              |          |        |         |        | _       |                |          |        |        |
| 048-66  |        |          |        |            |           |                |        |            |                                              |              |          |        |         |        |         |                |          | 53     | 91     |
| 066-94  |        |          |        |            | -         |                |        | . 23       |                                              |              |          |        |         |        |         |                |          | 2      |        |
| 122-149 |        | G 246    | 60.3   |            |           |                |        | .23        |                                              |              |          |        |         |        |         |                |          |        |        |
| 145-191 |        | •        |        |            |           |                |        |            |                                              |              | •        |        |         |        |         |                | -        | 45     | 25     |
| (A) FE  | MN N   | กกับ รัช | 5 PCT  |            |           |                |        |            |                                              |              |          |        |         |        |         |                |          |        |        |
| 18 C    | TTMAT  | en       |        |            |           |                |        |            |                                              |              |          |        |         |        |         |                |          |        |        |
| ici mi  | CRD-P  | ENFTRA   | TION R | ESISTA     | NCE -     | A ROD          | 0.6 CM | DIAI       | S SLÖWÎ                                      | LY PŪŠI      | HED IN   | TO BUL | K DENS  | ITY CL | DD, EQ  | UILIBRA        | ATED AT  | 1/10-  | BAR,   |
|         | OF CTA | NCE OF   | 0 4 0  | M DETM     | C A Pr    | CKET P         | ENETRO | METER.     | UNIT                                         | SARE         | FORCE    | (KG) A | AND NOT | ESTIM  | ATES O  | F <u>uncoi</u> | NFINED.  | COMPRE | 55 L V |

Pedon classification: Cumulic Haplaquoll; fine, montmorillonitic, mesic. Series classification: (Same as pedon).

Soil: Zook silty clay loam.

Soil no.: \$71-Iowa-93-1 (LSL NOS. 71L1164 - 71L1171).

Location: Wayne County, Iowa; 20 feet east and 100 feet north of the southwest corner of the SE% NE% sec. 4.

T. 69 N., R. 21 W.

Vegetation and land use: Soybeans; cropland.

Parent material: Fine textures alluvium that contains less than 15 percent sand.

Physiography: Low, flat flood plain about 1/4-mile north of the straightened channel of the south fork of the Chariton River.

Relief: Plan to slightly concave.

Slope: Less than 1 percent.

Drainage: Poorly drained.

Erosion: None.

Ground water: None within 8 feet (seasonal rainfall below normal).

Permeability: Slow.

Described by: J. D. Highland and L. D. Lockridge, October 1971.

(Colors are for moist soil unless otherwise stated)

Ap 71L1164 0 to 18 cm (0 to 7 inches). Black (10YR 2/1) heavy silty clay loam, kneaded very dark gray (10YR 3/1); cloddy parting to weak fine granular structure; firm; few patchy grayish brown (10YR 7/2 dry) silt and sand coatings on some peds; common fine roots; strongly acid (pH 5.4); abrupt wavy boundary.

Al2 71L1165 18 to 30 cm (7 to 12 inches). Black (10YR 2/1) light silty clay, kneaded same; weak fine subangular blocky parting to weak fine granular structure; firm; few fine roots; strongly acid (pH 5.4); gradual smooth boundary.

Al3 71L1166 30 to 48 cm (12 to 19 inches). Black (10YR 2/1) light silty clay, kneaded same; weak fine subangular blocky structure; firm; few hard dark reddish brown oxide concretions 1 to 3 mm in size; medium acid (pH 5.6); gradual smooth boundary.

14 711167 48 to 66 cm (19 to 26 inches). Black (10YR 2/1) light silty clay; weak medium prismatic parting to weak fine subangular blocky structure; firm; few soft reddish brown oxide accumulations 1 to 3 mm in size; medium acid (pH 5.6); gradual smooth boundary.

A15 71L1168 66 to 94 cm (26 to 37 inches). Black (10YR 2/1) silty clay, kneaded very dark gray (10YR 3/1); weak medium prismatic parting to weak medium angular and subangular blocky structure; firm; few soft dark brown oxide accumulations 1 to 3 mm in size; medium acid (pH 5.8); gradual smooth boundary.

AC 7111169 94 to 122 cm (37 to 48 inches). Black (10YR 2/1) silty clay, kneaded very dark gray (10YR 3/1); weak medium prismatic parting to moderate medium angular and subangular blocky structure; firm; few soft dark brown oxide accumulations 1 to 3 mm in size; medium acid (pH 5.8); gradual smooth boundary.

Cl 71L1170 122 to 145 cm (48 to 57 inches). Very dark gray (10YR 3/1) light silty clay; few fine distinct dark grayish brown (2.5Y 4/2) mottles; weak medium prismatic parting to weak medium angular and subangular blocky structure; firm; few thin patchy light gray (10YR 7/1 dry) silt coatings on some peds; few soft dark brown oxide accumulations 1 to 3 mm in size; some oblique pressure faces; sheen on some peds; medium acid (pH 5.8); gradual smooth boundary.

145 to 191 cm (57 to 75 inches). Dark gray (10YR 4/1) light silty clay, very dark gray coatings on C2g 71L1171 some prisms; common fine faint dark grayish brown (2.5Y 4/2) mottles; weak medium prismatic structure; firm; common fine soft dark brown oxide accumulations 1 to 3 mm in size; some oblique pressure faces; sheen on some peds; few patchy light gray (10YR 7/1 dry) silt accumulations on some prism faces; medium acid (pH 5.8)

